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Abstract 

Indoor VOCs concentrations are influenced greatly by the transport and storage of VOCs in 

building and furnishing materials, majority of which belong to porous media. The transport and 

storage ability of a porous media for a given VOC can be characterized by its diffusion coefficient 

and partition coefficient, respectively, and such data are currently lacking. Besides, environmental 

conditions are another important factor that affects the VOCs emission. The main purposes of 

this dissertation are: (1) validate the similarity hypothesis between the transport of water vapor 

and VOCs in porous materials, and help build a database of VOC transport and storage 

properties with the assistance of the similarity hypothesis; (2) investigate the effect of relative 

humidity on the diffusion and partition coefficients; (3) develop a numerical multilayer model to 

simulate the VOCs’ emission characteristics in both short and long term.  

To better understand the similarity and difference between moisture and volatile organic 

compounds (VOCs) diffusion through porous media, a dynamic dual-chamber experimental 

system was developed. The diffusion coefficients and partition coefficients of moisture and 

selected VOCs in materials were compared. Based on the developed similarity theory, the 

diffusion behavior of each particular VOC in porous media is predictable as long as the similarity 

coefficient of the VOC is known. 

Experimental results showed that relative humidity in the 80%RH led to a higher partition 

coefficient for formaldehyde compared to 50%RH. However, between 25% and 50% RH, there 

was no significant difference in partition coefficient. The partition coefficient of toluene 

decreased with the increase of humidity due to competition with water molecules for pore surface 

area and the non-soluble nature of toluene. The solubility of VOCs was found to correlate well 

with the partition coefficient of VOCs. The partition coefficient of VOCs was not simply 

inversely proportional to the vapor pressure of the compound, but also increased with the 

increase of the Henry’s law constant. Experiment results also showed that a higher relative 
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humidity led to a larger effective diffusion coefficient for both conventional wallboard and green 

wallboard. The partition coefficient (Kma) of formaldehyde in conventional wallboard was larger 

at 50% RH than at 20% RH, while the difference in partition coefficient between 50% RH and 

70% RH was insignificant. For the green wallboard and green carpet, the partition coefficient 

increased slightly with the increase of relative humidity from 20% to 50% and 70%.  

Engineered wood products such as particleboard have widely been used with wood veneer 

and laminate to form multilayer assembly work surfaces or panels. The multilayer model study in 

this dissertation comprised both numerical and experimental investigation of the VOCs emission 

from such an assembly. A coupled 1D multilayer model based on CHAMPS (coupled heat, air, 

moisture and pollutant simulations) was first described. Later, the transport properties of each 

material layer were determined. Several emission cases from a three-layered heterogeneous work 

assembly were modeled using a developed simulation model. At last, the numerical model was 

verified by the experimental data of both hexanal and acetaldehyde emissions in a 50L standard 

small scale chamber. The model is promising in predicting VOCs’ emissions for multilayered 

porous materials in emission tests. 
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τ  : tortuosity, dimensionless 

λ  : mean free path of the molecule, m 
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δ  : permeability of the carpet in kg/msPa 

ρ  : specimen density, kg/m3      

ρAin  : density of inflow air for chamber A,  kg/m3 

ρAout  : density of outflow air for chamber A,  kg/m3 

ρBin  : density of inflow air for chamber B, kg/m3 

ρBout  : density of outflow for chamber B, kg/m3 

µ’  : dynamic viscosity, Pa.s 

µvapor  : Mew value of water vapor, = Dair (of Water vapor)/De, dimensionless 

µvoc    : Mew value of VOC, = Dair (of VOC)/De, dimensionless 

kvoc    : similarity coefficient, = µvoc / µvapor , dimensionless 
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Chapter 1 Introduction 

1.1 Background and problem definition 

Indoor air quality (IAQ) continues to be one of the major environmental issues due to the 

presence of many pollutants indoors and their health risks, irritation and discomfort to building 

occupants. Due to the growing cost of energy in recent years, in order to reduce energy 

consumption for heating, cooling and ventilation, more air-tight building construction has been 

commonly adopted. In the meantime, a large number of building materials that emit volatile 

organic compounds (VOCs) continue to be used including carpet, ceiling tile, paints, furniture.  

These materials emit a large variety of indoor pollutants in their service life time. New and 

secondary emissions as a result of indoor chemistry have also been identified (Weschler and 

Shields 1999, Destaillats et al. 2006, Weschler 2009). Sick building syndrome (SBS) due to indoor 

emission sources has been widely reported (U.S. EPA 1989, Baechler et al. 1993). As a result, 

indoor air pollution has been identified by the U.S. Environmental Protection Agency and the 

World Health Organization (WHO) as one of the top environmental risks to the nation’s health 

(WHO, 1989; U.S. EPA 1990).  

Indoor air pollutant includes odor, inorganic compound (CO, CO2, SO2, NOx, O3, etc.), 

organic compounds, radioactive gases, particles and bioaerosols (derived from virus, bacteria, 

fungi, dust mites etc.). Based on their boiling points, WHO defines organic compounds as further 

divided into very volatile organic compounds (VVOC), volatile organic compounds (VOC), semi-

volatile organic compounds (SVOC) and particulate organic matter (POM) respectively, as shown 

in Table 1.1. Volatile organic compounds or VOCs are organic chemical compounds whose 

composition makes it possible for them to evaporate under normal indoor atmospheric 

conditions of temperature and pressure, and hence accounts for a significant dose in occupants’ 

exposure to airborne indoor pollutants. 



www.manaraa.com

 2 

 

Table 1.1  Category of organic compounds (WHO, 1989) 

Description Abbr. Boiling point range (ºC) 
Very volatile VVOC <0 to 50-100 
Volatile VOC 50-100 to 240-260 
Semi-volatile SVOC 240-260 to 380 
Particulate organic matter POM 380-400 
 

VOCs include a variety of chemicals, some of which may have short- and long-term adverse 

health effects. The ability of organic chemicals to cause health effects varies greatly, from those 

that are highly toxic to those with no known health effect. As with other pollutants, the extent 

and nature of the health effect will depend on many factors including the level of exposure and 

the length of time exposed. Eye and respiratory tract irritation, headaches, dizziness, visual 

disorders and memory impairment are among the immediate symptoms that some people have 

experienced soon after exposure to some organics. Many organic compounds are known to cause 

cancer in animals; some are suspected of causing or are known to cause cancer in humans. 

California 1350 (2010) lists the inhalation reference exposure level for each specific compound, 

and the hazardous index target organs are also provided. Each compound has different target 

values.   

The research on VOCs’ emission characteristics, control and removal has received much 

attention in the last two decades because of their health risk to the health of building occupants. 

This dissertation focuses on VOCs’ emission characterization via experiments and modeling. 

Emission characteristics of a given VOC are primarily determined by its initial concentration level 

and distribution, internal diffusion and sorption within the material. The objective of this 

research was to improve the understanding of how they affect the VOC emission rate over time 

and develop experimental methods to determine the critical parameters needed to model VOC 

emissions from dry materials and material assemblies. 
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VOCs are emitted by a wide array of products numbering in the thousands. Examples include: 

paints and lacquers, paint strippers, cleaning supplies, pesticides, building materials and 

furnishings, office equipment such as copiers and printers, correction fluids and carbonless copy 

paper, graphics and craft materials including glues and adhesives, permanent markers, and 

photographic solutions. All of these products can release organic compounds while you are using 

them and, to some degree, when they are stored.  

It is necessary to identify those indoor contaminants and their sources within the building as 

well as to establish acceptable concentrations in indoor air. Since more than 8000 chemical 

species have been identified in the indoor environment, this would appear a daunting task. 

Furthermore, very little scientific data exist on the potential health effect of most of these 

chemicals either on an individual basis or as aggregates (Hazim Awbi, 2002). ASHRAE Standard 

189.1-2009 provides comprehensive lists of chemicals which are known to be present in domestic, 

commercial and industrial environments and give information on acceptable contaminant levels 

for both long- and short-term exposures. Building materials as VOC emission sources fall into 

dry materials or wet materials. “Dry” building materials are defined as products employed in 

either commercial or residential building construction that does not typically require any curing 

period following installation. Internal diffusion and storage processes generally control VOC 

emissions from these materials. Air velocity and turbulence over the material surface have little 

effect on their VOC emission rates. Such “dry” products include solid woods (spruce, pine, 

maple, oak), engineered wood materials (plywood, particleboard, oriented strand board), gypsum 

wallboard (standard, water- or fire- resistant), flooring materials (carpet, underpad /cushion, vinyl 

flooring), and acoustical ceiling tile (Magee et al., 1999). “Wet” building materials are defined as 

products employed in either commercial or residential building construction that typically 

requires a curing period following installation. They include products such as wood stain, paint, 

floor wax, polyurethane, adhesive and calking materials (Zhu et al., 1999). The VOC emission 

rates of dry materials are primarily determined by the internal transport and storage process while 
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those of wet materials are also strongly affected by mass transfer through the boundary layer over 

the material surface. 

Furniture as delivered products can be considered dry materials. Many VOCs may emit from 

furniture, including aldehydes, acids, alcohols, glycol esters, ketones, terpenes, etc. The amount of 

emissions varies from only several µg/m2s to hundreds of µg/m2s. Some compounds fluctuate; 

however, the trend is still down in the long run. Many factors may affect emission properties for 

furniture, such as temperature, relative humidity, air change rate, texture of the material, 

manufacture date, and paint type. The conventional experimental method to determine the VOC 

rate and its contribution to indoor concentration is through a dynamic chamber test. Either small 

scale (ASTM D5116), mid scale and full scale chamber (ASTM D6670) may be used. ASTM 

standards describe in detail the dimension and the steps in doing a chamber test for VOC 

concentrations. Generally, in the test, temperature and relative humidity of the chamber are kept 

constant. Fresh air is supplied to the chamber at a specific air change rate and is let out of the 

chamber as exhaust outflow. Positive pressure is maintained inside the chamber to prevent 

contamination from the ambient environment. The air samples in the exhaust flow are taken at 

specified times and then they are analyzed by appropriate analysis instruments for compound 

identification of VOCs and concentration quantification. The emission rate or emission factor of 

a VOC from the material is then determined by applying the mass balance principle to the 

chamber’s air volume. 

There are also some established influential standards that can be used to quantify the VOCs 

concentration at specified days after the materials are put into the chamber like (EPA/ETV 1999, 

California 2000, California 2004 and BIFMA M7.1 2005). In these test protocols, environmental 

chambers are used to determine the emission rates or emission factors of a workstation system or 

its components, which are in turn used to estimate the impact of the workstation system on the 

VOC concentration levels in a prescribed typical office environment.   
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However, the obtained VOCs concentration by any test method only provides information 

on specific VOCs from prescribed materials for the period of testing or shortly after that. It is 

difficult to extrapolate the emission data from test period to long term. Such prediction requires 

understanding of the emission mechanisms and fundamental mass transfer, sorption models to 

describe the internal transport and storage processes, and knowledge of the critical model 

parameters.  

Although experimental methods are available to measure the VOC concentrations for the 

studied materials, they are costly and time consuming, and limited to only short-term emission 

characterization. If the VOCs’ rates and their impact on indoor concentrations can be obtained 

by modeling, then it would be much more efficient and less costly. The model-based testing and 

evaluation method requires necessary model parameters to complete successful modeling. 

Mechanistic model development and experiment validations have been studied extensively 

previously: Guo and Tichenor (1992) developed the mass transfer model for “wet” coating 

material. Bodalal (1999) developed the double chamber method to measure diffusion/partition 

coefficient; Zhang et al. (1999) developed the diffusion model for multi-layer and complex 

materials; and Yang et al. (2001) developed the mass transfer model for “wet” coating materials 

applied to absorptive materials. However, each study often covers a few selected materials and 

VOCs, so it is impossible to predict most of the VOCs detected in indoor air and in most of the 

widely used materials. 

To fill this gap, a complete VOCs database of model parameters is needed in order to cover 

the typical VOCs and widely used materials. In addition, the effect of environmental conditions 

on emissions is not well understood yet. In terms of VOCs database development and 

environment effect, the previous studies still lack: 

1. Sufficient measurement of the diffusion and partition coefficients of typical VOCs in 

common building/furniture materials. 
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2. A general VOC database needed for the modeling of VOCs’ emissions from porous 

building/furniture materials. 

3. A possible method to reduce conventional chamber testing. 

4. Accurate measurement of changes of the diffusion/partition coefficient within indoor 

humidity range. 

5. Understanding of the physical mechanism of the effect of humidity conditions on the 

emission rate of VOCs and partition/diffusion coefficients. 

In reality, most building/furniture materials are made of many layers instead of one single 

layer, so it is better that the VOCs emission from those multilayer materials can be simulated 

in both short term and long term. Relevant emission issues can be analyzed by the simulation 

as well. However, a convenient simulation tool for this purpose is not available yet. In terms 

of numerical model development for multilayered materials, the previous work still lacks: 

1. A numerical model to simulate VOC emission from multilayer materials. 

2. Prediction of long term VOC emission effects on indoor air quality based on the input of 

critical parameters. 

3. Emission characteristics of VOCs within and from the multilayer materials. 

4. Possible control methods to reduce emission concentrations. 

1.2 Research objectives 

To fill the gaps in the areas mentioned above, the research objectives of this dissertation 

are defined as follows: 

1) Validate the similarity hypothesis between the transport of water vapor and VOCs in 

porous materials, and build a VOCs database of model parameters with the assistance of 

the similarity hypothesis; 

2) Investigate the relative humidity effect on the diffusion and partition coefficient; 
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3) Develop a numerical multilayer model to simulate the VOCs’ emission characteristics in 

both short and long term.  

1.3 Research scope 

This study included three major components. 

First was the development of the laboratory test method and dynamic dual chamber system 

which was used to validate the proposed similarity hypothesis between water vapor and VOCs 

transport. The important relevant theory regarding the determination of diffusion coefficient and 

partition coefficient was first reviewed and discussed.  A reference material, calcium silicate, was 

adopted for the experimental validation of the similarity between water vapor and VOCs 

transport. Both measurement for water vapor transport and VOCs transport were conducted. In 

order to confirm the test method, repeat tests for water vapor and several selected VOCs 

(formaldehyde, acetaldehyde and toluene) were conducted. The conventional dry cup test method 

was used to validate the water vapor measurement. The mercury intrusion porosimetry method 

was also used to determine the pore size distribution and used to estimate the diffusion 

coefficients of VOCs and water vapor for comparison with dynamic dual chamber test results. 

The uncertainty of the dual chamber test method was analyzed. The similarity theory was also 

confirmed by the VOCs emission test data for particleboard by comparing the emission rate 

estimated from the similarity theory with the actual measurements. 

Second was the experimental investigation of the relative humidity effect on the partition and 

diffusion coefficients. VOC transport and sorption in a porous medium in the building materials 

(calcium silicate) were measured under three levels of relative humidity (25%, 50% and 80%) by 

using the same dynamic dual chamber method. Tests were conducted for a water-soluble 

compound (formaldehyde) and a non-soluble compound (toluene). In addition, the transport of 

acetaldehyde, hexanal, benzaldehyde, butanol and decane through the calcium silicate were also 

tested at 50% RH to study the relationship between the effective diffusion coefficient (De), 
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partition coefficient (Kma) and the VOCs’ physical properties (molecular weight, vapor pressure, 

and Henry’s law constant). Furthermore, the partition and diffusion coefficients of formaldehyde 

were measured for three other widely used materials (conventional gypsum wallboard, “green” 

gypsum wallboard, and “green” carpet) under three relative humidity (RH) conditions (20%, 50% 

and 70% RH). The main purpose was to generate enough accurate test results for a conclusion of 

humidity effect. 

Third was the development of a numerical model to simulate VOC emission from a 

multilayered worksurface. This study comprises both numerical and experimental investigation of 

the VOCs emission from such an assembly composed of painted veneer, particleboard and 

veneer. A coupled 2D multilayer model based on CHAMPS-BES (coupled heat, air, moisture and 

pollutant simulations) was first described physically and mathematically. Parametric studies were 

used to help determine the input parameters for the model. Simulations regarding the emission 

characteristics of VOCs emission and the effect of additional layers on the particleboard and 

veneer were also conducted.  At last, the numerical model was verified by experimental data on 

hexanal emission from both individual layers and multilayers in a 50L standard small scale 

chamber.  

1.4 Dissertation organization 

Chapter 1 introduces the background for the indoor air quality and VOCs, and identifies 

research needs in the fields of VOCs emission. Also, the specific objectives and scope of this 

dissertation are outlined.   

Chapter 2 gives literature reviews of related work previously performed by other researchers. 

First, the fundamentals of transport and sorption are reviewed. Later, the existing experimental 

methods to determine partition and diffusion coefficients are also summarized. Both advantages 

and disadvantages of those methods are given. There is also a detailed introduction to previous 

studies on the relative humidity effect on VOCs emission and diffusion/partition coefficients. 
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Finally, the state-of-the-art of both the theoretical and numerical models development for 

multilayer assembly is reviewed.  

The focus of Chapter 3 is the validation of the similarity theory between water vapor and VOCs 

transport in porous media. It begins with a description of the developed dual chamber experiment 

facility to measure the diffusion and partition coefficient. Theoretically, the definitions of three 

diffusion coefficients are clarified. The experiment results of VOCs (formaldehyde, toluene, 

acetaldehyde, butanol, hexanal, benzaldehyde, decane) in a reference material, calcium silicate, are 

presented and analyzed in detail; in the meantime, a validation of the dual chamber method is also 

presented. Finally, the validation of similarity theory in particleboard is also given. 

Chapter 4 presents the experimental data on relative humidity’s effect on diffusion and partition 

coefficients. The results of diffusion and partition coefficients of four common materials: calcium 

silicate, conventional gypsum wallboard, “green” gypsum wallboard and “green” carpet under 

different humidity conditions are given. The possible reasons for the phenomenon are also 

discussed in detail.  

Chapter 5 introduces the numerical model that is used to simulate VOCs emission from 

multilayered worksurfaces. The model is first described in detail in terms of its mathematical 

development. Then parametric studies of the effects of the diffusion coefficient, the partition 

coefficient and the initial VOC concentration on the emission rate are presented. Later, the 

simulations of CHAMPS-BES which were designed to evaluate multilayer models by comparing the 

simulation results against the experimental measurements are presented. Several simulations 

regarding real scenarios, such as the emission characteristics of VOCs from worksurface and an 

investigation of the possibility of reducing VOC concentration by adding additional layers on top of 

the major VOCs source, are also presented. 

Chapter 6 summarizes the work in this study. The limitations and possible applications of 

similarity theory and the multilayer model are discussed. The findings of the experiment and 
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simulations in this dissertation are concluded. The recommendations for future research in these 

fields are also given.  

Additional work regarding 1) the VOCs database, 2) the material characterization of calcium 

silicate and particleboard, 3) the individual test results of conventional gypsum wallboard, “green” 

wallboard and “green” carpet, and 4) the cited standards of procedures used in the lab 

measurement are documented in the Appendices. 
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Chapter 2 Literature Review 

2.1 Introduction 

This chapter reviews previous research on: 1) fundamentals of VOC transport and sorption 

in porous media, 2) the methods to determine the diffusion and partition coefficients of VOCs, 3) 

the effect of relative humidity condition on VOC transport and storage, and 4) the development 

of a multilayer model to predict the VOC emission from the furniture/building materials.  The 

objective was to understand the state of art in these subjects, and identify knowledge gaps and 

areas for further research. 

2.2 Fundamentals of VOCs transport and sorption in porous media 

2.2.1 Microscopic view of porous media 

Most building and furniture materials are considered as porous media which in the microscale, 

consist of a solid material matrix and void space (pores). The pore size and shape depend on the 

nature of the material itself. By use of sophisticated optical and electron microscopy, the 

microstructure of porous materials can be observed. These methods are widely used in soil 

science, petroleum engineering and the paper making industry. Out of all of these technologies, 

one - scanning electron microscopy (SEM) – has been introduced into indoor air science to study 

the microscopic details of building materials of interest (Xiong et al. 2008). Representative 2D 

cross images from the scanning electron microscopy (SEM) of two materials of interest in this 

dissertation (particle board and veneer) are shown in Fig. 2.1. A 3D SEM image of hardwood is 

also shown in Fig. 2.2.  

The SEM images help gain insight into the micro structure of the studied porous media and 

also serve as the basis for the development of a mechanistic model for the transport of the 

pollutants like VOCs and moisture.    
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Figure 2.1 Representative side face image of (a) particleboard and (b) veneer (Tests conducted in 

College of Environmental Science and Forestry, State University of New York as part of this 

research) 

 

 
 
Figure 2.2 3D scanning electron micrograph of a hardwood, Populus deltoids, showing vessels (v), 

and the characteristic structural features of the wood of broad-leaved species. Note also the inter-

vessel pitting (ip), ray-vessel pitting (rvp), and the pores (po) which are vessels as seen on the 

transverse surface. r=ray. (Core et al. 1979) 

To quantify the pore size distribution and structure, mercury intrusion porosimetry (MIP) or 

the BET method have been used to provide the pore volume distribution. The total porosity of 

several common building/furniture materials are provided in Table 2.1. It can be seen that even 
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for the same type of materials like calcium silicate and ceiling tile, their porosity may vary 

significantly. The pore volume distributions of four porous materials of high density calcium 

silicate, low density calcium silicate, particleboard and veneer are provided in Fig. 2.3. The pore 

size of calcium silicate is relatively uniform compared to particleboard and veneer, which is in the 

range of 0.3μm-2.0μm for high density and 0.8μm-3.0μm for low density. For particleboard, the 

majority of pores are in the range of 1.6μm-105μm, while some pores are also in the range of 

0.003μm-0.07μm. For veneer, pore sizes cover 0.003μm-100μm. By comparison, we can see that 

each material has different distribution characteristics, which may be governed by the raw 

materials and the manufacturing process. Pore size distribution helps determine the types of 

VOCs diffusions that take place in the porous media. 

Table 2.1 Porosity of materials measured by MIP 

Materials Porosity (%) 
Calcium silicate_Low density(LD) 26.67 
Calcium silicate_High density(HD) 16.97 
Particleboard 37.00 
Veneer 51.89 
Ceiling tile 1 28.67 
Ceiling tile 2 55.48 
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Figure 2.3 Pore volume distribution of high density (HD) calcium silicate, low density (LD) 

calcium silicate, particleboard, and veneer (tests conducted in LABTEB, University of La Roche, 

France as part of this research) 

 

2.2.2 The representative elemental volume (REV) 

In order to model transport and storage processes at the microscopic level using the 

continuum approach, the concept of a representative elementary volume has been introduced 

(Whitaker 1969, Bear and Bachmat 1991).  

 

 

 

 

Figure 2.4 Schematic of a Representative Elementary Volume (REV) 

The size of the REV (refer to Fig. 2.4) is very important: the obtained properties have to be 

independent of the size and continuous in space and time. Therefore, it has to be small enough to 

be considered as infinitesimal and large enough to account for the microscopic heterogeneity of 

the material. To obtain meaningful macroscopic values, Whitaker (1969) states that the 

characteristic length (l) of the REV must satisfy: 

d << l << L                                                                                                                       (2.1) 

where d is a typical microscopic distance, L is a typical macroscopic length and l is the 

characteristic length of the REV. The left part of the inequality states that the characteristic 

length of the REV must be sufficiently larger than the size of a single pore so that the REV 

includes a sufficient number of pores. The right part of the inequality states that the characteristic 
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length of the REV must be sufficiently smaller than the length over which macroscopic variations 

in material properties occur.  

This characteristic length l of the REV is not a feature of the material but is determined by 

the property investigated. The properties include the transport and storage properties in the 

porous media. As a consequence, the concept of an REV implies the existence of a scale at which 

a common characteristic length of the REV can be found for the properties of interest. 

2.2.3 Sorption and sorption isotherms 

Sorption usually refers to two processes, adsorption and desorption. Adsorption is the 

process by which the gas molecules (namely VOCs molecules in this dissertation) are adsorbed to 

the surface of porous material by physical or chemical means. Only physical adsorption is 

covered in this dissertation. Physisorption (or physical adsorption) is adsorption in which the 

forces involved are intermolecular forces (van der Waals forces) of the same kind as those 

responsible for the imperfection of real gases and the condensation of vapours, and which do not 

involve a significant change in the electronic orbital patterns of the species involved. Desorption 

is the opposite process from adsorption, in which the adsorbed molecules are released back into 

gas phase from the adsorbed sites. When the concentration (or pressure) of substance in the gas 

phase is lowered, some of the sorbed substance changes to the gas state. Heat gain or release may 

be involved in those two phenomena, depending on the specific substance and material as 

adsorbent. Heat of adsorption is that latent heat given off by a material as it is adsorbed onto 

another substance. One example would be the release of significant heat by water vapor 

adsorbing on dry silica gel. Heat of desorption would be the heat associated with desorbing a 

material, such as in the baking out of silica gel to dry it.  

Sorption isotherm describes the adsorbed VOCs in the material versus the gas phase at a series 

of consecutive concentration levels, i.e., the relationship between the concentrations of adsorbed 

VOCs and the gas phase VOCs. Several well-known adsorption isotherm theories have been 
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developed to describe the adsorption/desorption behavior of gas molecules with solid surfaces 

such as Langmuir, Freundlich, and Brunauer-Emmett (Ruthven 1984, Do 1998). A sorption 

isotherm can be measured by using the VOC extraction method (James, et al. 2009). For low 

concentration levels as in most indoor VOC emission problems, a linear sorption isotherm has 

been found to be applicable, and has been widely adopted. In this case, the partition coefficient, 

defined as the ratio between the sorbed phase and gas phase concentration at equilibrium 

conditions is the only parameter needed to describe the sorption isotherm. 

2.2.4 Transport mechanisms and governing equations 

Four distinct mechanisms of transport inside a porous media may be identified: molecular 

diffusion, Knudsen diffusion, Poiseuille flow and surface diffusion. Molecular diffusion is the 

dominant transport mechanism when the mean free pass of the gas (i.e. the average distance 

traveled between molecular collisions) is small relative to the pore diameter. However, in small 

pores and at low pressure the mean free path can be greater than the pore diameter and collisions 

of molecules with the pore walls occur more frequently than collisions between diffusing 

molecules. Under these conditions the collisions between molecules and pore walls provide the 

main driving force for transport, known as Knudsen diffusion. Both the Knudsen and molecular 

diffusion mechanisms involve flow through the gas phase within the pore. There is in addition 

the possibility of a direct contribution to the flux from transport through the physically adsorbed 

layer on the surface of the pores, and this is referred to as surface diffusion. If there is a 

difference in total pressure across a porous medium, then there will be a direct contribution to 

the total flux of VOCs from forced laminar flow through the pore, which is called Poiseuille flow.  

The diffusion process can be expressed by the Fick’s first equation: 

x
CDJ
∂
∂

−=                                                                                                                        (2.2) 

where, J is the mass flux in kg/m2s, D is the diffusion coefficient in m2/s, C is the concentration 

in kg/m3, and x is the distance in the direction of transport.   
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For molecular diffusion, the diffusion coefficient of VOC in the material can be obtained by: 

τ
εair

m
DD =                                                                                                                         (2.3) 

where Dm is the diffusion coefficient caused by molecular diffusion only in m2/s, Dair is the 

diffusion coefficient of VOC in air in m2/s, ε is the porosity of the material, τ is the tortuosity of 

the material, which is typically determined by experiment. For Knudsen diffusion, the diffusion 

coefficient is obtained by: 

2/1)(97
M
TrDk =                                                                                                                 (2.4) 

where, Dk is the diffusion coefficient caused by Knudsen diffusion only in m2/s, r is the mean 

pore radius in m, T is the temperature in Kelvin and M is the molecular weight of the diffusing 

species in g/mol. Typically, for VOC emissions from the dry materials, both molecular and 

Knudsen diffusion are significant transport mechanisms, and in this case, the combined diffusion 

coefficient due to both of these two modes becomes: 

km DDD
111

+=                                                                                                                   (2.5) 

The conditions under which either Knudsen or molecular diffusion becomes the dominant 

transport mechanism follow Dk>>Dm or Dm>>Dk (Ruthven 1984, pp137), respectively. The 

procedure to obtain the diffusion coefficient due to surface diffusion is described in detail in the 

literature (Ruthven, 1984, pp137). According to the findings of Blondeau (2008), surface 

diffusion might also be significant even in the indoor VOC application. For Poiseuille flow, the 

corresponding diffusion coefficient is: 

µ8
Pr 2

=D                                                                                                                             (2.6) 

Where P is the absolute pressure in pa, μ is the dynamic viscosity in pa.s, and r is the mean pore 

radius in m. This effect is negligible if the pressure drop across the material is small. 
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2.3 Methods for Determination of Diffusion and Partition Coefficients 

The diffusion and partition coefficients depend on the properties of VOCs, the 

microstructure of the materials, and environmental conditions. The diffusion coefficient has been 

found to be linearly correlated with the reciprocal of VOCs’ molecular weight, and the partition 

coefficient to be inversely proportional to VOCs’ vapor pressure (An et al. 1999, Bodalal 2000 

and 2001, Cox et al. 2001). Additionally, the partition coefficient is found to be linearly 

proportional to the octanol-air partition coefficient (m3 air/m3 octanol) for some VOCs (Won et 

al. 2001). The octanol-air partition coefficient is the ratio of a chemical’s concentration in liquid 

octanol (C7H15CH2OH) to its concentration in air at equilibrium. 

In order to mechanistically simulate VOC emissions from materials by using the diffusion 

model, three critical parameters need to be known: the initial VOC concentration, the partition 

coefficient and the diffusion coefficient. However, experimental data are still very limited for 

these parameters. Four major categories of measuring methods have been proposed in the past: 

the cup method, the twin chamber method, the porosity test method, and the microbalance test 

method. They are discussed in detail in this section. 

2.3.1 Cup method 

The cup method is the simplest way to measure the diffusion coefficient.  Only one VOC can 

be applied in the apparatus since it measures the weight change of the specimen In the wet cup 

method, a material specimen covers the top of a cup containing a liquid VOC, placed in a 

controlled atmosphere, and the specimen-cup assembly is weighed periodically by microbalance 

until a steady state is approached for a period of time. The diffusion coefficient is calculated from 

the steady-state rate of VOC weight loss: 
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C
d

A
mDs

.

=                                                                                                                       (2.7)          

where D is the diffusion coefficient of tested material in m2/s, 
.
m  is the mass flow rate through 

the material (calculated from the slope of the weight loss curve) in mg/s, A is the material area in 

m2, d is the material thickness in m, and C is the mass concentration of the diffusing substance in 

mg/m3 in the cup. The schematic of the wet cup method is as following: 

 

Figure 2.5 Wet cup method 

The defect of the wet cup method is that the liquid VOC placed in the cup creates saturation 

concentration, which is unrealistically high for indoor air quality application; e.g., at 23ºC, the 

saturation concentration for n-octane is 97.36g/m3 and that for ethyl acetate is 473.45 g/m3. 

These values are not realistic compared to tens of μg/m3 (or less) or hundreds of ug/m3 in room 

air. From the studies on water vapor diffusion through building materials, it was found that the 

difference in the concentration level could lead to a significant difference in diffusion coefficients 

(ASHRAE 1997). The strong point of the wet cup method is the simplicity of the apparatus and 

the theory itself.   

The dry cup method evolved from the wet cup method to overcome the preceding 

disadvantages. The liquid VOC is replaced by a much lower injected VOC inflow concentration, 

which maybe closer to the reality. Desiccants (for water vapor) or strong sorbents (for VOCs) are 

placed inside the cup to guarantee zero vapor pressure and the vapor is introduced into a control 

C 
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chamber. However, it takes more time to obtain the diffusion coefficient due to the relatively 

small VOCs.  

2.3.2 Microbalance test method 

Cox et al. utilized the high resolution dynamic microbalance to measure and record changes 

in a vinyl flooring (VF) sample weight during sorption and desorption tests. Using this method, 

the diffusion and partition coefficients of water, n-butane, toluene, phenol, n-decane, n-dodecane, 

n-tetradecane, n-pentadecane in vinyl flooring were determined individually. A VF sample was 

placed on the microbalance in the sample chamber. The sample weight was first stabilized by 

passing clean air through the sample chamber until equilibrium was reached. Influent air was then 

switched to clean air and the desorption process was monitored until equilibrium was re-

established. Equilibrium was assumed when a five-point moving average rate of mass change 

reached ~1% of the maximum rate of change of the mass.   

For a particular VOC, the sorption equilibrium was described using a partition coefficient, or 

y
CK =                                                                                                                               (2.8)      

where C was the equilibrium concentration in the material phase, and y was the corresponding 

concentration of the species in the gas phase. The diffusion coefficient D was determined by 

fitting a diffusion model to experimental sorption and desorption data. Under the experimental 

conditions, the rate of change in mass due to Fickian diffusion was given (Crank, 1975) by 
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π                                                        (2.9)        

where M was the total mass of a VOC that had entered or left the slab in time t, M∞ was the 

corresponding quantity at saturation reached, and 2L was the thickness of the VF sample.  
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The experiment (Cox et al 2001) proved that the derived diffusion coefficient is independent 

of the initial inflow concentration in the range of 11500-65000 μg/m3 during the adsorption 

period, and the sorption profile was not actually affected by the appearance of the other 

compound. This agreed with the traditional belief that the diffusion coefficient and the partition 

coefficient were independent of concentration at the lower concentrations typically associated 

with gas and material-phases in the indoor environment. However, the adsorbed VOCs (phenol 

and n-dodecane) had a slight increase due to the elevation of the water vapor at 50%RH 

compared to single compound tests.  

Under given environmental conditions, diffusion coefficient and partition coefficient were 

determined not only by VOC physical properties, but also by the material itself. Evidence showed 

that the logarithm of the partition coefficient of n-dodecane in vinyl flooring correlated well with 

the logarithm of vapor pressure (R2=0.998) and that diffusion coefficients of n-decane, n-

dodecane, n-tetradecane, and n-pentadecane correlated well with their molecular weights 

(R2=0.983)(Cox et al. 2001). 

This method avoids taking many samples to quantify air concentrations and reduces the 

relevant errors induced by air sampling, thermal desorption and GC/MS analysis. A demanding 

requirement for this method is that the microbalance is supposed to be highly sensitive and the 

concentrations of interest must be within the measurement ranges.   

2.3.3  Twin chamber method 

Just as the name implies, the twin chamber method uses two identical chambers with the 

material specimen placed between them. VOCs are injected into one of the chambers. Air 

samples in both chambers are taken periodically until the system reaches a steady state. Unlike 

above methods, several VOCs can be tested at the same time. 
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 2.3.3.1 CLIMPAQ method 

Meininghaus et al. (1998) used two CLIMPAQ type small-scale chambers (Gunnarsen et al. 

1994) to measure the diffusion coefficients for n-octane and ethyl acetate in eight building 

materials. They were wallpaper with paste, PVC floor covering, carpet, acrylic paint on woodchip 

paper, gypsum board, and aerated concrete, solid concrete, and brick wall. The test chamber 

CLIMPAQ was made of panes of window glass. Other main surface materials were stainless steel 

and eloxated aluminum. The volume of each chamber was 50.9 L and the experiment was carried 

out at 24±0.5ºC and relative humidity of 45±3%. VOC concentrations in the supply and the 

exhaust air of each chamber were measured. The modified Fick’s law was used to calculate the 

diffusion coefficient: 

12

2
CC

C
A

Vd
C
x

A
mDs −

−=
∆
∆

−=                                                                                    (2.10)                  

where V was the ventilation rate in m3/s, d was the material thickness in m, A was the area of 

specimen in m2, and C1, C2 were the VOC concentrations at the steady-state condition in the 

primary (contaminated air supplied) and secondary (clean air supplied) chambers, respectively in 

mg/m3.  

The concentration difference given in the Fick’s Law equation was the concentration 

difference of the specimen surfaces; it is, however, impossible to directly measure the surfaces 

concentrations of a specimen. To minimize error, they placed a fan in each chamber to mix the 

chamber air (air velocity 0.08m/s). They assumed the chamber air was perfectly mixed, and the 

surface concentration was the same as the chamber air concentration.  

2.3.3.4 Diffusionmetric method 

Bodalal et al (2000) developed the method to measure diffusion coefficients and equilibrium 

partition coefficients. In the test, two identical chambers were connected with the targeted 

material in the middle of the two chambers, among which one was a high concentration chamber; 
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the other was a low concentration chamber.  They kept the pressure difference between the two 

chambers at zero and no convection occurred. In this way, both partition coefficients and 

diffusion coefficients could be computed.  

The governing equation within the material was  

2
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x
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t
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∂

∂
=

∂
∂

                                                                                                                 (2.11)      

Boundary conditions 

At x=0, C=ke.c1                                                                                                                (2.12) 

At x=l,   C=ke.c2                                                                                                               (2.13) 

Initial condition 

At t=0,                    0≤x≤l            C=0                                                                             (2.14) 

where C(x, t) was the concentration of the diffusing substance at time t in the test specimen at a 

point whose distance was x from the surface. A was the total area of the sample and D was the 

diffusion coefficient of the specific compound under study. Ke was the equilibrium partition 

coefficient. The diffusion coefficient and partition coefficient could be solved by means of the 

least-square regression method and Laplace-Carson Transformation. The obvious disadvantage 

of this method is that multiple solutions may be derived because of the least-square regression 

method.  

2.3.4 Porosity test method 

Tiffonnet et al. (2000) obtained diffusion coefficients from mercury intrusion porosimetry 

(MIP) tests. In assessing the diffusion coefficients, they applied Carniglia’s mathematical model 

which considers the pore interconnections, the pore constriction, and the pore random 

orientation. In obtaining the effective diffusion coefficient, the connected-pore volume fraction 

was measured, and the mean diffusion coefficient in the pores of the material and the tortuosity 
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factor of the porous network were computed from the MIP tests. They tested seven building 

materials: solid concrete, aerated concrete, gypsum board, brick, mortar, gypsum, and chipboard. 

The diffusion coefficients were obtained for methane, ethyl acetate, n-octane, and n-dodecane. 

They compared their results with those of the cup method and the CLIMPAQ method. The 

results were in the same order of magnitude, but the diffusion coefficients obtained by the 

porosity test were generally larger than the others. Haghighat et al. (2002) and Blondeau (2008) 

presented tables that summarized the diffusion and partition coefficients measured in all previous 

research including the literature mentioned in this dissertation. 

2.4 Effects of humidity Conditions on VOC Transport and Sorption 

The primary environmental conditions that may affect VOC transport and sorption are 

temperature and relative humidity. As a critical environmental factor, the influence of relative 

humidity on VOC diffusion is still not well understood. 

Relative humidity can affect the emission rate depending on the types of emission materials 

and types of VOCs emitted. Wolkoff (1998) tested five common building products under 0% and 

50%RH. The materials studied were nylon carpet with latex backing, PVC flooring, floor varnish 

on pretreated beechwood parquet, sealant and water-borne wall paint on gypsum board. An 

increase from 0% to 50%RH led to a higher concentration of 2-ethylhexanol from carpet during 

the first week and an obvious concentration elevation of 1, 2-propandiol from wall paint during 

the whole test period of 25 days. The concentration of dimethyloctanols from sealant was higher 

at 50% than 0% during the first couple of days, but the trend reversed later. The explanations 

given by the paper was that the low humidity might result in a different film structure due to a 

faster dry out process, or that water vapor carried out polar substances from the surface. 

     Fang et al. (1999) measured the chemical emissions from five building materials (carpet, 

polyvinyl chloride (PVC) flooring, sealant, floor varnish and wall paint) in the relative humidity 

range of 30%-70% in modified CLIMPAQ chamber. For floor varnish and wall paint, the 
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measured TVOC increased very significantly when humidity increased from 30% to 70%; 

however, for carpet, PVC flooring and sealant, the influence of relative humidity was not obvious. 

Relative humidity affected only the waterborne materials-floor varnish and wall paint. 

     Zhang et al. (2002) tested the sorption characteristics at 25%, 50% and 80%RH, 

respectively. The tested VOCs included ethylbenzene, benzaldehyde, decane, 1, 4-

dichlorobenzene, undecane and dodecane. For painted drywall, the increase of RH from 25% to 

80% significantly increased the adsorbed amount of decane, 1, 4-diclorobenzene, undecane and 

dodecane. For ceiling tile, the sink effect of benzaldehyde was increased when RH increased from 

50% to 80%, but the amount of dodecane adsorbed decreased with the increase of relative 

humidity. The results did not show obvious influence for the other compounds. For carpet, only 

the amount of 1, 4-dichlorobenzene increased slightly with the increase of relative humidity. The 

difference of solubility of VOCs might be one factor that influenced the sink effect, and the 

water retention curve for those materials also needed to be known in order to analyze if 

significant condensed water existed in higher RH level conducted in these tests.  

     The above results indicate that a higher humidity may lead to increase in some VOC 

emissions from some materials, but the mechanism for the humidity effects is not clear. Broadly 

speaking, possible causes of enhanced emission at a higher humidity may include enhanced 

diffusion, smaller sorption capacity or increased generation of VOCs due to hydrolysis. 

     Very limited experimental research has been done on the effect of humidity on the 

diffusion coefficient and partition coefficient. Huang et al. (2006) tested the partition coefficient 

of five VOCs (cyclohexane, toluene, ethyl acetate, isopropyl alcohol and methanol) in ceiling tile 

at 0%, 35% and 75% RH conditions. They did not observe any influence of relative humidity 

except on methanol. The partition coefficient of methanol in ceiling tile decreased linearly with 

the increase of relative humidity. The explanation of the phenomenon given by the paper was the 

high polarity of methanol. The attraction between water molecules and methanol molecules may 



www.manaraa.com

 26 

weaken the interaction force between solid surface and the methanol molecule. In more recent 

literature (Farajollah et al. 2009), five VOCs (octane, isopropanol, cyclohexane, ethyl acetate, and 

hexane) were measured for ceiling tile. Three relative humidity conditions (0%, 20%, and 40%RH) 

were investigated. Only minor humidity effects on the diffusion coefficient were observed. One 

possible reason for this phenomenon was that only isopropanol had relative high solubility, and 

the other four compounds had insignificant solubility in liquid water. That was why no obvious 

VOC was observed at higher RH level. 

     Bouilly et al. (2006) proposed a physically based model regarding the relationship between 

relative humidity and VOCs in porous media. They considered three kinds of interactions: 

competition for adsorption at the pore surfaces of the material, change in the diffusion properties, 

and possible absorption/desorption of VOCs due to capillary condensation of water vapour in 

the small pores of the materials. The proposed model analyzed the underlying principles of the 

relative humidity influence in the microstructure and could be used to predict the humidity effect 

on the diffusion and partition coefficient in theory. The detailed calculation procedure for 

absorption into condensed water is discussed below. 

     For a uniform pore air-phase concentration C’ (g/gair), the unit mass of a VOC contained 

in the porous volume, Mair(kg/m3 mat) is given by: 

     'CM airair ερ=                                                                                                              (2.15) 

where ρ(kg.m-3) is the air density and ε (m3  air/m3 mat) is the total porosity of the material. The unit 

mass of VOC which is adsorbed at the pore surface, Mads(kg/m3 mat), depends on the sorbed-

phase concentration of the chemical, Cs (kg/kgmat), and the material density ρmat (kg/m3):   

     smatads CM ρ=                                                                                                             (2.16) 

     Assuming a linear adsorption isotherm, the above equation transforms into: 

      'KCM matads ρ=                                                                                                           (2.17) 
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where K (kgair/kgmat) is the partition coefficient of the VOC and material system. 

     Finally, the unit mass of VOC which accumulates in the pores due to absorption in 

condensed water, Mabs (kg/m3 mat) is given by: 

     liqliqabs CM ε=                                                                                                              (2.18) 

where εliq (m
3
water/m3

mat) is the moisture content of the material for a uniform relative humidity RH 

in the material, and Cliq (kg/m3 liq) is the VOC aqueous-phase concentration. For a dilute solution, 

Henry’s law applies, and the above equation transforms into:  

     'HCM liqabs ε=                                                                                                             (2.19) 

where H (kgair/m3 water) is the Henry’s constant (solubility in water) of the VOC.  

    They concluded that, for the influence of humidity on VOC absorption to condensed 

water, humidity might tremendously increase the water soluble-species mass capacity of any kind 

polydispersed material due to water condensation when relative humidity was higher than 60%. 

     For the influence of humidity on the VOC effective diffusivity in materials, take acetone 

for example, humidity showed no influence on particleboard and gypsum, but a significant 

decrease in acetone diffusivity in mortar occurred when humidity increased from 50%RH to 80% 

RH.  

     For the influence of humidity on competition with VOC adsorption, they found that the 

sorbed phase concentrations of adsorbed benzene, o-xylene and styrene in plywood at 80%RH 

could be up to 30% lower than in dry conditions.      

2.5 Multilayer model development of VOCs emission 

VOCs concentration is a big concern in assessing indoor air quality with the increasing use of 

chemical-related building and furniture materials in modern residential homes and offices. There 

are a large number of indoor VOC emission sources, such as paint, adhesive, carpet, wood, and 
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printer. Meanwhile, a large number of experimental measurements of the VOCs emissions have 

been done in the last twenty years (Zhang et al. 1996; Guo, Murray and Lee 2002; Guo et al. 2004; 

Virta et al. 2005; Koivula et al. 2005; Järnström et al. 2007; Shinohara et al. 2009). However, since 

the experiments only give information on the specific concentration level of that particular object, 

it is impossible to extrapolate the data from one condition to another condition, and experiments 

also usually take a long preparation time and test duration, not  to mention the high cost 

associated with it.  

Thus, modeling (both theoretical and numerical modeling) is necessary to overcome the 

disadvantages of experiment and serves as an excellent tool in providing the in-depth 

understanding of the mechanism of VOCs emission.  

2.5.1 Theoretical model development 

Little, Hodgson and Gadgil (1994) first established a simple but effective diffusion model for 

emissions from carpet. They assumed that all VOCs are from a thin layer of uniform polymer 

backing material (the main component of the carpet). The model also assumed that 1) the initial 

VOC concentration in the material was uniform, 2) the boundary layer resistance was negligible 

compared to the diffusion resistance of the material, and 3) the sink effect of the chamber wall 

was neglected. Therefore, the VOC concentration with respect to time in either air phase or 

material was calculated by the model if the diffusion coefficient, partition coefficient and initial 

VOCs concentration were measured. Based on this model, there are a few further improved 

physically-based analytical solutions to single layer material, even considering the sink effect of 

the surface, the mass transfer resistance in the air phase boundary layer and the distribution of 

initial VOC concentration et al., published in literature (Haghighat and Zhang 1999; Cox, Little 

and  Hodgson 2002; Xu and Zhang 2003; Xu and Zhang 2004; Deng and Kim 2004).  

Kumar and Little (2003) developed a single layer model to predict the source/sink behavior 

of diffusion-controlled building materials. The models allowed an uneven initial material-phase 



www.manaraa.com

 29 

concentration and a transient influent gas-phase concentration to be simultaneously considered. 

One of the premises for this model was that the chamber air was well mixed. The model to 

describe the emission from vinyl flooring was defined as following: 

 

Figure 2.6  Single layer model 

The model described emissions from a homogeneous, diffusion controlled source. The sink 

effect of a chamber wall could be included in the model in terms of Ks. Within the material, the 

diffusion equation was as follows: 
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                                                                                                                 (2.20) 

where C was the VOC concentration in the slab of material, t was time, x was distance from the 

base of the slab, and D was a factor of proportionality representing the amount of substance 

diffusing across a unit area through a unit concentration gradient in unit time, often termed 

diffusion coefficient. The initial condition was given by an arbitrary function describing the 

nonuniform material–phase concentration profile or 
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The VOC concentration within the chamber air was governed by the subsequent equation: 
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where yin indicated the VOC concentration in the chamber air. The solution to VOC 

concentration in the material was offered as 

C(x, t)= 
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and the qm values are the positive, nonzero roots of  

2)tan( mmm kqhLqq −=                                                                                                   (2.25)                                   

and h and k were given by 

AKD
Qh =                                                                                                                         (2.26)                                                                                        

AK
Vk =                                                                                                                           (2.27)                                                                                                              

Another partition coefficient Ks was introduced to indicate the chamber wall sink effect. It 

indicated that the order of magnitude of wall sink effect was insignificant relative to the 

adsorption of the material. This model was confined to homogeneous vinyl flooring material. In 

fact, there are more heterogeneous and nonuniform materials than homogeneous materials in 

rooms. 



www.manaraa.com

 31 

Nearly all the physically-based models in the literature assumed that the convective mass 

transfer coefficient hm was infinite, i.e., )()( tCtCs ∞= (Dunn, 1987; Clausen et al., 1991; Little et al., 

1994). On the contrary, Xu and Zhang (2003) improved the above models by considering the 

convective mass transfer coefficient. The term was written as 

))()((),( tCtCh
x

txCD sm ∞−=
∂

∂
−                                                                                    (2.28)        

where hm was the convective mass transfer coefficient in m/s, Cs (t) was the concentration of 

VOC in the air adjacent to the interface; )(tC∞  was the VOC concentration in atmosphere. At 

last, the solution to the model was provided as well: 
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where H=hm/K, βm(m=1,2,…) were the positive roots of 

HLm =∞ )tan(ββ                                                                                                         (2.30)                                        

Xu and Zhang (2004) also defined the initial concentration of VOCs of interest in the 

building material as an equation but not with constant and uniform distribution, i.e. 

)()0,( 0 xCxC =                                                                                                               (2.31)                                                                                                             

where, C0 was the distribution of initial contaminant concentration.  

Based on the above research, it was found that the model is being improved and that 

assumptions are going to be replaced by the real situations gradually. At first, the chamber air and 

compounds are assumed to be well mixed, and the initial contaminant distribution is considered 

as uniform. Afterwards, two kinds of premises (uniform initial VOC distribution and negligible 
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boundary layers) are being corrected. What is more, the solutions to a series of equations is 

solved and presented. In a sense, the model can serve as a tool to predict emission characteristics. 

The limitation to this model is that it can only predict emission from single layer materials, but it 

is not applicable to more complicated building materials, which is always the case in residential or 

commercial rooms. Additionally, the parameters in the model (such as diffusion coefficient, 

partition coefficient, mass transfer coefficient and initial compound distribution in the material) 

are often unknown in reality. Therefore, these factors combine to prevent the accuracy and 

convenience of the model.  

Most building wall and furniture material is composed of different layers instead of an ideal 

single uniform layer: for example, a typical wall is made of, from exterior to interior surface, 

façade/wind barrier/OSB (oriented strand board)/insulation/gypsum, and a typical desk panel(or 

called worksurface) is a combination of adhesive/veneer/particleboard/veneer. Obviously, it is of 

more significance to study emissions from multilayered structures in the prediction and 

evaluation of indoor VOC concentrations. To solve this problem, a complicated analytical 

solution was finally put forward in detail to compute VOC emissions from the general composite 

assembly (Hu et al. 2007). 

Though the analytical multilayer model has been developed, the solution is very complicated 

for people to use. In order to calculate the VOC concentrations in a room or chamber, complex 

equations need to be solved and errors may be encountered in the calculation process.  

2.5.2 Numerical model development 

On one side, more and more general analytical solutions have been gradually developed; on 

the other side, because of the mathematical complexity involved in solving the equations, there is 

also increased interest in developing a numerical solution. Bodalal Awad (1999) put forward a 

general multilayer numerical model by splitting 3D problem into three 1D sub-problems, taken 

into account both the material sink effect and the air phase boundary layer resistance. Another 
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complicated multilayer model using a CFD (computational fluid dynamics) model was proposed 

by Xudong Yang (Yang et al. 2001). They developed a more comprehensive numerical model that 

considered VOC transport in the air, surface sorption, and diffusion in the material. The model 

could be used for simulating VOC sorption and desorption rates of homogenous building 

materials with constant diffusion coefficients and material-air partition coefficients. Particularly, 

Yang developed this model based on more general and non-uniform mixing conditions for 

indoor air, which was different from other models. The model is able to predict the VOCs 

emission from dry materials in relatively short terms. Thereafter an integrated IAQ model was 

established in studying the vinyl floor tile/glue/plywood (Haghighat and Huang 2003). More 

recently, a multilayer model using the fugacity has been proposed for predicting VOC emissions 

from SIPs (structure insulated panels) (Yuan et al. 2007).  

However, there is no numerical simulation regarding multilayer worksurfaces published in the 

literature so far. As a further development, in this dissertation, a general 2D multilayer model 

based on CHAMPS (coupled heat, air, moisture and pollutant simulations) is being described (Li 

2007, Grunewald et al. 2007). The model is capable of predicting both VOC emission and 

moisture transport from the composite materials. The model is validated by the experimental data 

from the standard small scale emission test for non uniform three layered particleboard. The 

model has the advantage of quick use by researchers because of its interactive user interface and 

could be extended to other multilayer materials very easily as long as the material characteristics 

are known.  

2.6 Summary and Conclusions 

This chapter reviews the fundamentals of VOC diffusion and sorption, the method to 

determine the partition coefficient and diffusion coefficient, the humidity effect, and the 

multilayer model development.  It can be concluded that: 
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1. It is important to know the detailed pore structure of the porous media because it helps 

determine the mode of transport of VOCs in a specific porous material. SEM imaging provides 

visual insight into the microstructures of the porous media, and the MIP or BET method can be 

used to measure the pore volume distribution of the media. 

2. There are many previously developed methods available for the measurement of partition and 

diffusion coefficients, and each method has its own advantages and disadvantages. However, 

experimental data for diffusion and partition coefficients are still very limited considering the 

large number of VOCs and materials of interest to indoor air quality. This is largely due to the 

time and cost involved in such experiments. The similarity theory developed in chapter 3 is an 

attempt to investigate the possibility that much of the water vapor transport data can be utilized 

to estimate diffusion coefficients for VOCs. 

3. Though there are some previous studies about the humidity effect on VOC emission, but 

there is not a consistent conclusion about the phenomenon. The mechanism of the humidity 

effect is also not well understood. 

4. Most building or furniture materials are multilayered. There is a need to develop numerical 

simulation models for predicting the emissions from multilayer material assemblies such as the 

composite wood assemblies that are widely used in desks, cabinets, floors etc. In Chapter 5, we 

will present a CHAMPS-BES model for simulating multilayer assemblies and investigate how the 

different model parameters and initial concentration distributions in different layers affect the 

overall emissions from the assemblies.  
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Chapter 3 Analogy between Water Vapour and VOCs Diffusions in Porous 

Media 

3.1 Introduction 

The majority of building and furnishing materials are porous media. In-materials, diffusion 

and storage play a predominant role in determining the rates of VOC emissions from these 

materials. Knowledge and data on the diffusion and partition coefficients are necessary in 

applying mass transfer models to predict the emission rates, but such data are very limited. Four 

major categories of measuring methods have been proposed in the past few years: the cup 

method, the twin chamber method, the porosity test method, and microbalance test method. In 

the wet cup method, tested material was covered over the top of a cup containing a liquid VOC, 

placed in a controlled atmosphere, and then weighed periodically by microbalance (Haghighat et 

al. 2002). The diffusion coefficient was calculated from the rate of VOC weight loss. The twin 

chamber test method (Bodaldal et al. 2000) was capable of measuring several compounds 

simultaneously, but multiple solutions might be derived due to the estimation of the diffusion 

coefficient and partition coefficient in the same least-square regression method. A porosity test 

method had been applied to homogenous and single layer material. Tiffonnet et al. (2000) 

obtained diffusion coefficients from mercury intrusion porosimetry (MIP) tests. In this method, 

the connected-pore volume distribution was measured by MIP; the mean diffusion coefficient in 

the pores of the material and the tortuosity factor of the porous network were computed from 

the pore volume distribution. The method relied on physical mechanisms at the microscopic scale 

to describe the kinetics of sorption. In the microbalance test method, Cox et al. (2001) made use 

of the high resolution dynamic microbalance to measure and record changes in vinyl flooring (VF) 

sample weight during sorption and desorption tests, which were then used to fit a 1-D diffusion 

model to determine the diffusion coefficient. However, the comparison among different studies 

is difficult because different materials were tested. 



www.manaraa.com

 36 

Salonvaara et al. (2006) used a dynamic dual-chamber system to compare the diffusion of 

decane and water vapor (Table 3.1). Similar orders of magnitude of diffusion coefficients were 

found between the water vapor and decane for the same material, while the two materials tested 

(gypsum wallboard and OSB) differed by an order of magnitude. The results suggested that there 

might be a similarity relationship between water vapor and VOCs in diffusion through porous 

media. The objective of this study was to further validate the similarity hypothesis and investigate 

the feasibility of determining VOC transport properties based on water vapor diffusion 

characteristics of building materials.  

Table 3.1 Effective diffusion coefficients of water vapor and decane 

Material Compounds Effective diffusion coefficients in m2/s, (T=23ºC, RH =50%) 

Gypsum board 
Water vapor 4.1×10-6 

Decane 2.8×10-6 
Oriented strand 

board 
Water vapor 1.5×10-7 

Decane 1.1×10-7 
 

3.2 Theory 

Consider two identical chambers that are separated by a material (with a cross section area of 

A) whose diffusion coefficients for a VOC and water vapor are to be determined (Fig. 3.1).  With 

constant QA, QB and CAin, and CBin=0, the VOC or water vapor flux through the material at steady 

state can be calculated by: 

A
QC

j BBout=                                (3.1a) 

3.2.1 Diffusion coefficients 

Three different definitions of the diffusion coefficient have been used in the literature and 

sometime cause confusion. Their relationships and how they can be calculated from the diffusion 

flux in Equation (3.1a) are elucidated below: 

1) Effective diffusion coefficient De: 
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At steady state,    

   
A

QC
L

CCDj BBoutBA
e =

−
=            (3.1b)                                                                

hence, De can be obtained by  

  B
BA

B
e Q

A
L

CC
CD
−

=                                                                                                               (3.2)     

where De is the effective diffusion coefficient in m2/s. CA and CB are the VOC concentrations in 

the air phase of chambers A and B in kg/m3, respectively (Note: CA=CAout and CB=CBout assuming 

perfect mixing in both chambers). L is the thickness of the material in m (Fig. 3.1). A is the 

material area exposed to the air in m2. j is the mass flux in kg/ (m2.s).  This definition was used in 

the wet cup method (Haghighat et al. 2002), CLIMPAQ method (Meininghaus et al. 2000) and 

dual chamber method (Salonvaara et al. 2006) and was directly determined from the experimental 

data in this study. This definition also included the effects of convective mass transfer resistance 

through the air film on either surface of the material, which are usually negligible as compared to 

the in-material diffusion resistance except for very permeable materials. 

 

Figure 3.1 Schematic of a dual-chamber setup and expected concentration profile at steady state 
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2) Apparent diffusion coefficient: Assuming a homogeneous material, the VOC diffusion mass 

flux inside the material can be described by the one dimensional Fick’s law as: 

 Lx0     , ≤≤
∂
∂

−=
x

C
Dj m                                                                                             (3.3) 

at steady state, 

L
CC

Dj Lxmxm == −
= 0                                                                                                    (3.4)                                                                                      

where D is the apparent diffusion coefficient in m2/s; Lxmxm CC == ,0 are the VOC 

concentrations in the material at the interfaces in kg/ (m3 material). This definition was used, for 

example, by Bodalal et al. (2000) and Cox et al. (2001) (termed “diffusion coefficient” in their 

papers). The difference between De and D is that the driving force adopted for De is the VOC 

concentration gradient in the air phase instead of that in the material as in D. The relationship 

between apparent diffusion coefficient and effective diffusion coefficient is deduced as follows, 

L
CCD

L
CCDK

L
KCKC

D
L

CC
Dj BA

e
BA

ma
maBmaALxmxm −

=
−

=
−

=
−

= ==0             (3.5)          

That is, 

ma

e

K
D

D =              (3.6) 

where Kma is the partition coefficient defined as amma CCK /= at equilibrium, Cm is the 

concentration inside the material and Ca is the concentration outside the material. The same 

partition coefficient is assumed to represent the material-air phase partition of the VOC at both 

interfaces considering that the resistance in the boundary layer is very small and hence negligible 

as compared to the resistance of in-material diffusion for dry material. It also has the assumption 

that equilibrium establishes instantaneously at the interfaces, which is justified since it is a much 

faster process than the in-material diffusion process.  
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3) Pore diffusion coefficient: The aforementioned two definitions regard the material as solid and 

homogeneous without considering its internal porous structure. Consider that a porous material 

consists of inter-connected air pores and a solid matrix, and assume that VOC transports only 

through the pore air which can be stored (adsorbed) on the surfaces of the solid matrix (e.g. 

represented by a partition coefficient Ks) in a Representative Elementary Volume (REV, Fig. 3.2).  

 Ks, the partition coefficient, is defined as 

pa

pm
s C

C
K =                                                                                                                       (3.7) 

where Cpm is the sorbed phase concentration in kg/m3 REV and Cpa is the gas phase 

concentration in the porous air in kg/m3 REV.  

REV

pa
pa V

M
C =                                                                                                                    (3.8a) 

REV

pm
pm V

M
C =                                                                                                                  (3.8b) 

REV

REV
m V

M
C =                                                                                                                   (3.8c) 

papmREV MMM +=                                                                                                        (3.9) 

where MREV is the total VOC mass in the REV in kg, Mpm is the sorbed phase VOC mass in the 

matrix in kg and Mpa is the VOC mass in the pore air in kg. 
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Figure 3.2 Schematic of a Representative Elementary Volume (REV) 

Dividing both sides of Eq. (3.9) by VREV, the relationship between the three concentrations 

can be obtained: 

pmpam
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pm
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+=+=     ..                                                                 (3.10) 

When the concentration in the material is in equilibrium with that in air outside the material, 

the relationship between Cpa and Ca can be derived from: 

apaREVaREVpa CCVCVC εε ==     i.e.       ...                                                                     (3.11) 

where porosity ε =Vp/VREV and Vp is volume of pore air in m3.  The relationship of Kma and Ks is: 

)1()(
/ s
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m
ma K

C
CC

C
CC

C
C
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+

=
+

== εε
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                                                 (3.12) 

1−=
ε
ma

s
K

K                                                                                                                (3.13) 

Note that Kma is typically measured in the experiment, such as in a headspace test and analysis 

(Little et al. 1994), while Ks is typically used in a numerical simulation models for vapor transport 

in a porous media such as the CHAMPS-BES (Grunewald et al. 2007). The local in-material 

diffusion flux can be described as 

(b) Conceptually (a) Physically 
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x
C

Dj pa
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at steady state, 
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0                                                                         (3.15) 

where Dp is the pore diffusion coefficient in m2/s. If the diffusion inside the pores is governed by 

molecular diffusion only (if d/λ ≥10; d is mean pore diameter; λ is mean free path of the VOC 

molecules), Dp can be calculated by 

µ
ε
ττ

ε airair
airp

DD
DD ===                                                                                          (3.16) 

where Dair is the diffusivity in free air in m2/s; µ is a factor that accounts for both porosity and 

tortuosity of the material. In CHAMPS (Grunewald et al. 2007, Li 2007, Xu et al. 2007&2008), it 

is termed the diffusion resistance factor and is represented by µvoc and µvapor for VOC and water 

vapor respectively. Tortuosity represents the geometric constraints which result in a longer 

diffusion path compared to the free path in the air. In Blondeau et al. (2003), the porosity ε and 

tortuosity τ were measured individually and used to calculate the pore diffusion coefficient. 

Since )1( spapmpam KCCCC +=+= , we have,  

s

m
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C
C

+
=

1
                                                                                                                (3.17) 

plug Eq. (3.17) in Eq. (3.15), we have,  
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= 00
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comparing Eq. (3.18) and (3.4), the relationship between D and Dp is obtained: 

s

p

K
D

D
+

=
1

                                                                                                                   (3.19) 
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That is, the “apparent” diffusion coefficient, D, includes the effect of sorption on the net 

transport of VOC in the porous material as well as diffusion through pore air. From Eq. (3.6) and 

(3.12), we have 
)1( s

e

K
D

D
+

=
ε

, insert this in Eq. (3.19), thus, the relationship between Dp and De 

can be described as 

pe DD ε=                                                                                                                      (3.20) 

3.2.2 Similarity coefficient 

In the field of Building Physics, µvapor factor (water vapor diffusion resistance factor) is 

attributed to the combined effect of both porosity and tortuosity. i.e., 

porositytortuosityvapor /=µ , and 

vapor

vapor
airvapor

e
DD
µ

=                                                                                                             (3.21a) 

Similarly we introduced a µvoc factor for VOC diffusion in a porous material, which is calculated 

as: 

air
voc

e

D
D

µ =                                                                                                                  (3.21b) 

Dair is the VOC diffusion coefficient in the free air in m2/s. However, the difference in 

physical properties (molar mass, polarity, and boiling point, et al.) between VOCs and water 

vapor, and the difference in concentration level inside the material would lead to different 

magnitude between water vapor and VOC diffusion coefficient in the pore air. For example, 

when the Knudsen diffusion or surface diffusion becomes important in porous media, the 

diffusion resistance will no longer only depend on the porosity and tortuosity. Therefore, it seems 

justifiable to relate the water vapor diffusion resistance factor and the VOC diffusion resistance 

factor by a similarity coefficient. We define the ratio between µvoc and µvapor as a similarity 

coefficient: That is, 
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vapore

air

vapor

voc
voc D

D
µµ

µκ ==                                                                                                              (3.21c) 

where κvoc is a dimensionless similarity coefficient, which is likely to be dependent on both VOCs 

and the material properties; µvapor is a dimensionless water vapor diffusion resistance factor, which 

can be obtained either by the dry cup or wet cup test method in hygrothermal experiments or by 

the dual chamber test method. If the similarity coefficients can be determined for VOCs and a 

reference material, the data on µvapor from previous hygrothermal research can be applied to 

estimate the diffusion coefficients for VOCs in the materials, and thus reduce the amount of 

testing needed for establishing a database of VOC diffusion coefficients in building materials and 

furnishings. To be useful, the ability to extrapolate from a reference VOC or material to other 

VOCs or materials is needed. 

3.3 Experimental 

3.3.1 Setup 

 In this study, two stainless steel chambers (0.35m x 0.35m x 0.15m each) were partitioned by 

a test specimen (Fig. 3.3). Each chamber was supplied with inflows under controlled temperature 

and relative humidity. Both chambers were supplied with the same airflow rate and the exhaust 

flow resistance was adjusted to achieve near zero pressure difference (<2 Pa) across the specimen 

so that air convection through the specimen was negligible for the material tested. The dual 

chamber system was placed in a laboratory with constant temperature 23 °C. The relative 

humidity of the inflow for both chambers was maintained at 50% by bubbling the liquid water via 

a PID (proportional-integral- derivative) control. The temperature and relative humidity of the 

inflow and outflow for both chambers were recorded continuously by a computer-based data 

acquisition system. Chamber A had a constant VOC injection in the inflow while Chamber B had 

no VOC injection. VOC was supplied by a Dynacalibrator containing a VOC permeation tube 

maintained at a specific temperature. The pressure drop between the two chambers was negligible 
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as verified by pressure measurements, since the same amount of air flow rate was supplied to 

both chambers and the same piping configuration was used for both chambers. An axial fan was 

mounted inside each chamber to ensure a good mixing condition. The VOC concentration in the 

inflow of chamber A was set at constant, and the concentration in chambers A and B were 

continuously monitored until they reached a steady state. The expected VOC concentration 

change within chambers A and B in the diffusion period were shown in Fig. 3.4(a). 

Concentrations in the outlets of chamber A and B were monitored as CAout and CBout. Under well-

mixed condition, CA=CAout and CB=CBout. At steady state, CAout and CBout were constant. The 

measured concentrations were considered to reach steady state when the moving average of CAout 

and CBout did not change more than 1% between two adjacent data points. Constant VOC 

concentration into chamber A (CAin) was provided by the permeation tube within a dynacalibrator. 

VOC concentrations (formaldehyde, acetaldehyde, toluene, benzaldehyde, butanol) of the 

outflows of both chambers were measured by proton transfer reaction mass spectrometry 

(PTRMS), which was pre-calibrated by the permeation tube under each RH condition because 

PTRMS measurement might be influenced by RH depending on the property of the specific 

VOC. Hexanal and decane concentrations were measured by gas chromatography mass 

spectrometry (GCMS) because they could not be measured by PTRMS. The sampling flow rate 

by PTRMS was 85.6х10-6m3/min. As indicated by the dotted line in Fig. 3.3, the PTRMS 

sampling line switched among CAout, CBout and CAin during the test.  



www.manaraa.com

 45 

 
(a) Schematic 
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Figure 3.3 Dual chamber system 

 

Figure 3.4 Expected VOC concentrations and RHs 

For VOCs, the chambers were flushed in the beginning, which meant that initial VOC 

concentrations for both chambers were zero. In contrast to the VOCs test, for the water vapor 
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test both chambers were initially kept at a specific relative humidity. When test began, a higher 

level of relative humidity was supplied into chamber A while the same relative humidity was 

maintained for the supply flow of chamber B. The change in relative humidity was recorded 

continuously until a steady state was reached. RHA and RHB were the relative humidity of 

chambers A and B. the relative humidity in the outlets of chambers A and B were monitored as 

RHAout and RHBout. Under well-mixed condition, RHA=RHAout and RHB=RHBout. At steady state, 

RHAout and RHBout were constant. The measured relative humidity was considered to reach a 

steady state when the moving average of RHAout and RHBout did not change more than 1% 

between two adjacent data points. The expected RHs in chambers are shown in Fig. 3.4(b).  

3.3.2 Test procedures 

For each VOC test, the following steps were followed: 

a) To make sure the sealing of the material is tight enough, a plastic board is installed in the 

specimen holder. Pressure test is conducted to check the tightness of the chambers. After the 

check, remove the plastic board from the specimen holder. 

b) Install the specimen in the specimen holder and assemble it air-tight with the dual chambers. 

The leakage of the two chambers should be less than 3% of the total supply air flow rate as 

determined by the difference between the inlet and outlet flow rates of the two chambers. 

c) Precondition the dual chamber facility by supplying the desired flow rates under the specified 

RH into both chambers. 

d) Measure the pressure drop between two chambers and verify that it is negligible (less than 2 

Pa).  

e) When the airflow rate, temperature and relative humidity are stable, take VOC background 

sample for chamber A and B, respectively. 
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f) Start the test by injecting constant VOC concentration into chamber A. In the meantime, 

record the VOC concentration change continuously. 

g) Stop the test once the VOC concentrations in two chambers reach steady state---i.e., the 

difference between two adjacent sampling time points is less than 1%. 

h) Flush the specimen until the VOC concentration approaches the background concentration 

in step d) and then go back to step b). 

For each water vapor test, the following steps were followed: 

a) Install the specimen in the specimen holder and assemble it air-tight with the dual chambers. 

The leakage of the two chambers should be less than 3% of the total supply air flow rate as 

determined by the difference between the inlet and outlet flow rates of the two chambers. 

b) Precondition the dual chamber facility by supplying the desired flow rates under the specified 

RH into both chambers. 

c) Measure the pressure drop between two chambers and verify that it is negligible (less than 2 

Pa).  

d) When the airflow rate, temperature and relative humidity are stable, take relative humidity 

background samples for chamber A and B, respectively. 

e) Start the test by injecting a higher relative humidity into chamber A. In the meantime, record 

the relative humidity change continuously. 

f)   Stop the test once the relative humidity in the two chambers reaches a steady state---i.e., the 

difference between two adjacent sampling time points is less than 1%. 

3.3.3 Experimental design 

To validate the proposed similarity hypothesis, both water vapor and VOCs diffusion tests 

were conducted and compared. Two different levels of relative humidity testing were conducted. 

In the first water vapor diffusion test, the initial RHs in chamber A and B were both 25%. When 



www.manaraa.com

 49 

the test began, the RH of inflow for chamber A was increased to 50%RH while maintaining a 

constant 25%RH inflow for chamber B, and then the changes of RHs in chamber A and B were 

monitored over time. In the second water vapor diffusion test, the initial RHs in chamber A and 

B were both 50%. When the test began, the RH of inflow for chamber A was increased to 

80%RH while maintaining a constant 50%RH inflow for chamber B. Table 3.2 summarizes the 

experiment design and the conditions for water vapor. Repeat tests were also done to evaluate the 

accuracy of the dual chamber method in measuring water vapor diffusion.  

Table 3.2 Experimental design and the conditions for water vapor 

No. Compounds Initial 
RHA 
(%) 

Initial 
RHB 
(%) 

RHAin 
(%) 

RHBin 
(%) 

QA=QB 
(m3/h) 

Test purpose 

1 WV 25 25 50 25 

0.0658 

Obtain μvapor 
2 WV 50 50 80 50 
3 WVR 25 25 50 25 Assess repeatability 
4 WVR 50 50 80 50 
 

Seven common VOCs in indoor air were selected as target VOCs: formaldehyde, toluene, 

acetaldehyde, hexanal, benzaldehyde, butanol and decane. Repeat tests for formaldehyde, toluene 

and acetaldehyde were also conducted to evaluate the accuracy of the dual chamber method in 

measuring the VOCs’ diffusion. The physicochemical properties of the selected VOCs and water 

vapor are presented in Table 3.3. Among all the compounds, formaldehyde has the largest vapor 

pressure. 

Table 3.3 Physicochemical properties of the selected VOCs and water vapor 

Compound Chemical 
 Class 

CAS # Formula MW 
(g/m
ol) 

Density(23
°C,kg/m3) 

Vapor 
Pressure 
(23°C,mm
Hg) 

Polarity 
(debye) 

Henry’s 
law 
constant((
mol/L)/at
m),23°C  

WV   H2O 18 1.00    
FOR Aldehyde 50-00-0 CH2O 30 1.09×10-3 3643.8 2.3 2743 
ACE Aldehyde 75-07-0 C2H4O 44 0.79×10-3 837.5 2.5 12 
HEX Aldehyde 66-25-1 C6H12O 100 0.83×10-3 10.00 naa 4.2 
BZD Aldehyde 100-52-7 C7H6O 106 0.98×10-3 1.06 2.8 35 
BUT Alcohol 71-36-3 C4H9OH 74 0.81×10-3 6.5 1.8 110 
TOL Aromatic 108-88-3 C7H8 92 0.86×10-3 25.8 0.4 0.14 
DEC Alkane  124-18-5 C10H22 142 0.73×10-3 1.18 0.0 1.4х10-4 b 
a Not available in the literature  
b The value provided here is at 25°C. The conversion from 25°C to 23°C is not possible because of the lack of the necessary data 
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In the test of VOCs diffusion through a calcium silicate, the inlet concentration of chamber A 

was set as 372µg/m3 except haxanal (128µg/m3). The flow rates of both chambers were 6.58×10-2 

m3/h except hexanal (3.52×10-2 m3/h). Before the test, calcium silicate was dried in the oven 

under 30ºC for 3 days and then preconditioned under a relative humidity of 50% to ensure a 

constant relative humidity for the calcium silicate.  During the test, the relative humidity of both 

inflows of the chamber was maintained unchanged at 50% as well. The same procedure was 

applied for all the tests. All eleven test conditions are summarized in Table 3.4. 

Table 3.4 Experimental design and the conditions for VOCs 

No. Compounds RH CAin 

(µg/m3) 

QA=QB 

(m3/h) 

Test purpose 

1 FOR 50 372 0.0658 Obtain effective diffusion coefficient, 
partition  coefficient 2 TOL 50 383 

3 FORR 
50 
 

372 

0.0658 

Evaluate the accuracy and reliability of 
dynamic dual chamber method in 
measuring effective diffusion coefficient 
and partition coefficient for VOCs 

4 TOLR 383 
5 ACER1 374 
6 ACER2 374 
7 ACE 

50 

374 0.0658 Obtain effective diffusion coefficient, 
partition  coefficient 8 HEX 128 0.0352 

9 BZD 401 0.0658 
10 BUT 383 0.0658 
11 DEC 372 0.0658 

Abbreviation: FOR-- formaldehyde; TOL-- toluene; ACE-- acetaldehyde; HEX-- hexanal; BZD-- benzaldehyde; BUT-- 

butanol; DEC-- decane;  

R-- repeat test; R1-- repeat test 1; R2-- repeat test 2. 

 
3.3.4 Test Specimen 

Calcium silicate (Fig. 3.5) was selected as a reference material in this study due to its well-

characterized moisture diffusion properties and wide usage as a building insulation material. Prior 

to the test, the calcium silicate was cut into a 50.8cm ×50.8cm ×1.0cm block, and sealed on each 

side by VOC free tape to prevent VOC diffusion through the edges. The specimen was then 

placed in a specially prepared steel specimen holder between two chambers, and clamped tightly 

together.  
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Figure 3.5 Picture of calcium silicate 

The pore volume distribution of calcium silicate measured by mercury intrusion porosimetry 

is provided in Fig.3.5 (a). Its pore surface area is 1722 m2/kg and the measured porosity is 

ε=0.1697m3/ (m3 REV). Ten times the Knudsen number (i.e.10λ/d) is used to divide the pore 

size ranges in which molecular diffusion or Knudsen diffusion is significant in porous media (Do 

1998, Ruthven 1984, Xiong et al. 2008). At 760 Torr, the calculated mean free paths by Eq.(3.22) 

for formaldehyde and toluene are 35.3 and 14.3 nm, respectively. Thus the corresponding pore 

diameters for formaldehyde and toluene need to be less than 353 nm (0.353 µm) and 

143nm(0.143 µm) respectively for the Knudsen mechanism to be significant.  

5.0'

2
2.3







=

MW
RT

P π
µλ      (3.22) 

where λ is the mean free path of the molecule (m); R is universal gas constant in J/ (mol. K); T is 

temperature in Kelvin; P is the pressure in Pa; MW is the molecular weight of the diffusing 

molecule (kg/mol);  and µ’ is the dynamic viscosity of the free air (Pa.s). From the analysis in Fig. 

3.6(a), we can see that the pore diameter in calcium silicate ranges from 0.326 µm to 0.589 µm; 

hence molecular diffusion dominates in the mechanism for formaldehyde and toluene in calcium 

silicate, while a meaningful amount of Knudsen diffusion can be expected for formaldehyde. 

The moisture sorption isotherm of the calcium silicate was obtained previously, and is shown 

in Fig 3.6(b). It is noted that for the range of relative humidity conditions (25% to 80% RH) 
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investigated, the moisture content has a weak dependence on the relative humidity. Therefore, it 

may be assumed that the variation in open pore porosity in the RH range is small and its impact 

on gas phase diffusion may be negligible. 

 Figure 3.6 Characterization of the test specimens---calcium silicate (density: ρ= 843.38 kg/m3. 

porosity: ε =16.97%. The diffusion resistance factor of water vapor: µvapor= 8.75. Thickness: 

L=0.01m. Area: A=0.093m2) 

3.3.5 The calculation of the effective diffusion coefficient and the partition coefficient 

A. Diffusion coefficients 

The effective diffusion coefficient, apparent diffusion coefficient and pore diffusion 

coefficient of VOCs are determined by Eq. (3.2), (3.6) and (3.20), respectively. 

B. Partition Coefficient: The VOC mass adsorbed by the material at the steady state is:  

[ ]dtCQCCQM
T

BoutBAoutAinA∫ −−=
0

)(                                                                         (3.23) 

where M is the total VOC mass in the material in kg; T is the end time of the diffusion test in 

hours. Using BLxmAxmma CCCCK //0 == ==  and Eq. (3.23), the partition coefficient can be 

obtained by 

[ ]
matBoutoutA

T

BoutBAoutAinA

BoutoutA

mat
ma VCC

dtCQCCQ

CC
VMK

)(

)(2/2 0

+

−−
=

+
= ∫                                              (3.24)             
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Where Vmat is the volume of calcium silicate in m3.  

The concept of the partition coefficient can also be applied to water vapor, and the only 

difference from VOC diffusion in the calculation procedure is the consideration of the initial 

moisture content before the test, which can be obtained by the sorption isotherm of water vapor 

(ASTM 2001).  

[ ]dtQM
T

BoutAoutBinAinA∫ −−+=
0

)( ρρρρ        (3.25) 

where ρAin, ρAout, ρBin, ρBout are water vapor density in the inflow and outflow of chamber A and B 

in kg/m3. The partition coefficient of water vapor can be obtained by: 

[ ]
matBoutoutA

T

BoutAoutBinAinA

BoutoutA

mat
ma VRHRH

dtQ

RHRH
VMK

)(

)(2/2 0

+

−−+
=

+
= ∫ ρρρρ

                                  (3.26) 

3.3.6 Sampling intervals 

For VOCs testing, each diffusion test was estimated to take 5 days or longer to complete 

depending on the materials. An air sample was taken at least every 8 hours for CAout and CBout, 

which resulted in a total of 2x15=30 data points for a 5 day test.  For each of these data points, 

the PTRMS was used to take an air sample every 10 seconds for 5 minutes, and the average value 

was used to determine the concentration. In addition, the background concentration of chamber 

A and B was taken before the injection of VOCs, and the constant injection rate was verified by 

measuring CAin daily. For the water vapor test, the relative humidity of both chambers was 

automatically recorded every minute.  

3.3.7 Data analysis 

In Eq. (3.23), M is the integration of the continuous concentration profile of CA and CB. Since 

CA and CB were obtained as discrete data points, a curve fitting was first applied to the measured 

CA and CB data by using the combination of the CHAMPS model (Zhang 2005, Grunewald et al. 

2007 and Li 2007) and empirical equations. The effective diffusion coefficient was obtained 
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directly from the experimental data by Eq. (3.2) leaving the partition coefficient as the only 

unknown to be determined by the Least-Square curve fitting in CHAMPS. However, in one test 

result, there was a test duration in which the CHAMPS model did not fit the experimental data 

very well, and an empirical model was used instead to match the experimental data points. Fig. 

3.7 illustrates the simulated concentration against measured concentration for toluene by 

CHAMPS. For the test duration from zero to one hour for CBout, the simulated result of 

CHAMPS was lower than the experimental data points, so the empirical equation was used to 

match the data points. Later, a time interval of 1 minute was used to do the numerical integration 

for the calculation of total mass in the material.  The calculation equation was as follows: 

[ ]∑ ∆−−= tCQCCQM BBAAinA )(                                                                                   (3.27) 

 
Figure 3.7 Example of measured and simulated concentration for toluene  

3.3.8 Calibration of PTRMS and GCMS 

PTRMS was used in the measurement of formaldehyde, toluene, acetaldehyde, benzaldehyde 

and butanol. The VOCs concentrations measured by PTRMS were calibrated against the 

permeation tube from VICI Corporation. The emission rates of the permeation tube for 

formaldehyde, toluene, acetaldehyde, benzaldehyde and butanol were 408ng/min, 420ng/min, 

410ng/min, 440ng/min and 414ng/min, respectively. PTRMS calibration was completed by 
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adjusting the dilution flow from a special RH controlled system other than the dilution flow from 

Dynacalibrator. The operation temperature was maintained at 23 ºC for all the calibration 

experiments. Figure 3.8 (a~e) displays the calibration results of PTRMS for these compounds at 

50%RH. The linearity coefficient was around 0.99 for all the cases, which indicated a good 

linearity of PTRMS measurement for these five compounds.  

GC/MS was used in the measurement of decane and hexanal. The standard solution of 

different levels of concentrations was prepared for each test. In the calibration result of GC/MS 

(Fig. 3.9), the abscissa is the VOC mass adsorbed by the Tenax-TA sorbent tube, and the 

ordinate is the area integrated from the generated chromatograph peak for the compound.  
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Figure 3.8 Calibration results of PTRMS 
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Figure 3.9 Calibration results of GC/MS 

(a) formaldehyde (b) toluene 

(c) acetaldehyde (d) benzaldehyde 

(e) butanol 

(a) decane (b) hexanal 
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3.4 Results and discussion for calcium silicate 

3.4.1 Water vapor 

It took 10 hours for water vapor to reach a steady state. The experimental results for water 

vapor are given in Figure 3.10. The calculated diffusion coefficients and partition coefficients are 

presented in Table 3.5. The results of repeated tests were also presented and compared with the 

first tests. The data were recorded every minute, and fewer data points were drawn in the figures 

in order to have a better readability for the overlapped curves. The good repeatability showed 

that the dual chamber method was able to measure water vapor diffusion very well. 

 
 

Figure 3.10 Experimental results of water vapor in calcium silicate 

Table 3.5 Diffusion & partition coefficients of water vapor in calcium silicate 
No.  RHAin 

% 

RHBin 

% 

RHAout 

% 

RHBout 

% 

Dair 

m2/s 

De 

m2/s 

D 

m2/s 

Dp 

m2/s 

Kma µvapor 

1 WV 50.1 25.1 41.7 35.5 2.66×10-5 3.04 ×10-6 7.58×10-9 1.79×10-5 401 8.75 

2 WV 80.0 50.0 70.0 62.8 2.66×10-5 3.06 ×10-6 9.05×10-9 1.80×10-5 338 8.71 

3 WVR 50.1 25.1 41.4 35.1 2.66×10-5 2.89 ×10-6 7.15×10-9 1.70×10-5 404 9.19 

4 WVR 80.0 50.0 70.0 62.7 2.66×10-5 2.97 ×10-6 8.51×10-9 1.75×10-5 349 8.97 

 

3.4.2 VOCs 

The experimental results of formaldehyde, toluene and acetaldehyde are summarized in Fig. 

3.11 and Table 3.6. Repeat tests of formaldehyde, toluene and acetaldehyde under 50%RH were 

conducted, and the results are also given in Fig. 3.11 (a, b and c). The repeated test of each VOC 

agreed well with the first test. The time for formaldehyde, toluene and acetaldehyde to reach 
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equilibrium was 120, 8, and 8 hours, respectively. It took the longest time for formaldehyde to 

reach steady state because of the large sink effect of formaldehyde in calcium silicate. The results 

presented in Table 3.6 include the VOCs concentration at equilibrium, effective diffusion 

coefficients, apparent diffusion coefficient, pore diffusion coefficient, partition coefficient, and 

µvoc for VOCs (µvoc is the diffusion resistance factor for VOC in the material, which is calculated 

as Dair/De) and similarity coefficient kvoc. The similarity coefficient is the ratio of the diffusion 

resistance factor of VOC (µvoc) to that of water vapor, which is calculated as µvoc/µvapor. The 

diffusion coefficient in air is obtained from the literature (Nelson 1982). µvoc and kvoc in Table 3.6 

are also needed input parameters for the VOC database of CHAMPS-BES (Grunewald et al. 

2007), a coupled heat, air, moisture and pollutant simulation program for porous media and 

building envelope systems. For the effective diffusion coefficients of all measured VOCs at 50% 

RH, the descending order is BZD>FOR>BUT>ACE>TOL>HEX>DEC. For the partition 

coefficient of tested VOCs at 50°C, the descending order is 

BUT>BZD>HEX>FOR>ACE>TOL. 



www.manaraa.com

 59 

 

(a) Formaldehyde (b) Toluene 

(c) Acetaldehyde 

Figure 3.11 Repeat test of formaldehyde, toluene and acetaldehyde in calcium silicate 
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Table 3.6 Diffusion & partition coefficients of VOCs in calcium silicate 

No. Compoun
d 

RH 
% 

CAin 

μg/m3 
CAss 

μg/m3 
CBss 

μg/m3 
Dair(23°C) 
m2/s 

De 

m2/s 
D 
m2/s 

Dp 
m2/s 

Kma µvoc kvoc 

1 FOR 50 366.4 226.1 136.1 1.49×10-5 3.28×10-6 1.26×10-9 1.93×10-5 2597 4.54 0.52 
2 TOL 50 372.7 267.4 118.2 8.40×10-6 1.72×10-6 1.29×10-8 1.01×10-5 133 4.88 0.56 
3 ACE 50 367.9 227.6 125.6 1.12×10-5 2.67×10-6 1.21×10-8 1.57×10-5 221 4.19 0.48 
4 HEX* 50 128.1 60.8 34.8 6.71×10-6 1.55×10-6 1.98×10-10 9.13×10-6 7809 4.32 0.49 
5 BZD 50 390.9 227.5 149.6 6.99×10-6 4.17×10-6 2.59×10-10 2.46×10-5 16111 1.68 0.19 
6 BUT 50 370.5 218.7 128.4 8.52×10-6 3.09×10-6 1.71×10-10 1.82×10-5 18100 2.76 0.32 
7 DEC 50 356.8 218.5 76.7 5.25×10-6 1.17×10-6  6.89×10-6 / 4.47 0.51 
8 FORR 50 385.6 231.4 138.1 1.49×10-5 3.21×10-6 1.25×10-9 1.89×10-5 2568 4.64 0.53 
9 TOLR 50 379.6 253.6 124.7 8.40×10-6 2.10×10-6 1.71×10-8 1.24×10-5 123 4.00 0.46 
10 ACER1 50 359.2 222.2 121.3 1.12×10-5 2.61×10-6 1.13×10-8 1.54×10-5 232 4.29 0.49 
11 ACER2 50 357.5 217.9 119.6 1.12×10-5 2.64×10-6 9.33×10-9 1.56×10-5 283 4.24 0.48 

• The standard deviation of the mean for measured concentrations is +/- 1.8% 
•  The volume of the specimen Vmat=8.53×10-4 m3 
• * means the flowrate for this test is different from other tests 
 

3.4.3 Sensitivity study of surface diffusion 

It was found that most of the similarity coefficients of the tested VOCs are close to 0.5, 

except for benzladehyde and butanol, which have relatively larger partition coefficients than the 

rest of VOCs tested. A larger partition coefficient means more VOC molecules adsorbed onto 

(a) Butanol (b) Benzaldehyde 

(c) Hexanal 

Figure 3.12 Test of butanol, benzaldehyde and hexanal 
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the internal surfaces of porous media. Surface diffusion may play a role under relatively high 

sorbed phase VOC concentrations. To quantify the relative importance of surface diffusion, an 

order of magnitude analysis of surface diffusion to the diffusion coefficient caused by molecular 

diffusion and Knudsen diffusion was conducted. According to Blondeau et al. (2003 and 2008), 

the importance of surface diffusion can be indicated by the ratio of DsfKma and Dmk, where Dsf is 

the coefficient of surface diffusion, which is in the order of 10-9 m2/s; Dmk is the diffusion 

coefficient caused by both molecular diffusion and Knudsen diffusion. The pore volume 

distribution of the material can be obtained by mercury intrusion porosimetry. Dmk can be 

calculated by:  

τ
εσ p

mk

D
D

0

=                                                                                                               (3.28) 

where ε is the porosity of the material, τ is the tortuosity of the material. σp is the constriction 

factor, which stands for the effect of varying cross-sectional areas within a pore. It is often 

omitted, either because it is close to unity or because these effects are included in the tortuosity 

factor. D0 is the mean diffusion coefficient, which is calculated by: 

∑
∑

=

=

∆

∆
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VrD
D

1

10 )(
                                                                                                     (3.29) 

where ΔVi is the volume of mercury penetrating the pores. i=1 refers to the smallest group 

present which contributes a detectible non-zero ΔVi and i=m refers to the maximum size group 

present which contributes a detectible non-zero ΔVi. D(r) describes the way the diffusion 

coefficient varies as a function of the pore radius r. In most cases, it may be defined as: 

)2/(1
)(

r
DrD air

λ+
=                                                                                                         (3.30) 

where Dair is the VOC diffusion coefficient in air; λ is the mean free path of species; and r is the 

pore radius. Table 3.7 lists the comparison between the surface diffusion coefficient and diffusion 
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coefficient caused by molecular diffusion and Knudsen diffusion. Porosity and tortuosity are 

fixed properties for one specific material, so they are not involved in the calculation.  

Table 3.7 Sensitivity study for surface diffusion in calcium silicate 

Compound Dsf 
m2/s 

Kma D0 

τ
ε0D

KD
D

KD masf

mk

masf =  

Formaldehyde 10-9 2597 1.39×10-5 0.19(τ/ε) 
Toluene 10-9 133 8.07×10-6 0.02(τ/ε) 
Acetaldehyde 10-9 141 1.06×10-5 0.01(τ/ε) 
Hexanal 10-9 7809 6.46×10-6 1.21(τ/ε) 
Benzaldehyde 10-9 16111 6.73×10-6 2.39(τ/ε) 
Butanol 10-9 18100 8.15×10-6 2.22(τ/ε) 
Decane 10-9  5.08×10-6  
 

It is seen from the above table that the ratio of surface diffusion to molecular and Knudsen 

diffusion of benzaldehyde and butanol is one or two orders of magnitude larger than 

formaldehyde, toluene and acetaldehyde. The ratio (DsfKma/Dmk) of hexanal is in the same order 

of magnitude, but not as large as that of benzaldehyde and butanol. It has a similarity coefficient 

of around 0.5 instead of a much lower value, which is possibly due to a significantly lower test 

concentration. It appears that similarity theory applies only to the cases where surface diffusion is 

not significant. It should be noted that the diffusion coefficient for surface diffusion of different 

VOCs is expected to vary; however, no relevant data have been found in the literature. Further 

study is needed to determine under what conditions the effect of surface diffusion becomes 

important.  

3.4.4 Effect of the boundary layer mass transfer resistance 

In order to verify the assumption of neglecting boundary layer resistance at the interface of 

chamber air and specimen, an order of magnitude analysis was conducted to compare the 

boundary layer mass transfer resistance and the mass diffusion resistance. At steady state, the 

total mass transfer resistance from chamber A to chamber B is the sum of the internal diffusion 

resistance plus the two boundary-layer mass transfer resistances: 
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BsA hD
L

hU
111

++=                                                                                                 (3.31) 

where U is the overall mass transfer coefficient in m/s; hA and hB are the convective mass 

transfer coefficients in chambers A and B in m/s, respectively. L is the thickness of the material 

in m, and Ds is the diffusion coefficient of the material excluding boundary layer resistance in 

m2/s. 

Neglecting the mass transfer resistance would result in an overestimation of the internal 

diffusion resistance, and hence an underestimation of the diffusion coefficient. As established in 

(Haghighat et al. 2002), the error (e) due to neglecting the mass transfer resistance can be 

estimated by: 

%100×
−

=
s

es

D
DDe                                                                                                  (3.32) 

The air velocity over the test specimen surface was measured to be 1.64 m/s. Using the 

length of the specimen side as the length scale, the Reynolds number (Re) was calculated as 31874, 

which indicated that the flow was in a turbulent regime. The same convective mass transfer 

coefficient (h) was used in the boundary layers on two sides of the material, which means 

hA=hB=h. Assuming a fully developed turbulent flow over the specimen surface, Eq. (3.33) 

(Blondeau et al. 2008 and White 1991) was used to estimate the Sherwood number and then the 

convective mass transfer coefficient was obtained from Eq. (3.33) and (3.34):  

5
4

3
1

Re037.0 ScSh =                                                                                                           (3.33)                                                                                             

airD
hLSh =                                                                                                                          (3.34)                                                                                                 

airD
Sc ν

=                                                                                                                          (3.35)                                                                    
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where Sh is the Sherwood number, Sc is the Schmidt number, h is the convective mass transfer 

coefficient in m/s, L is the characteristic length in m, Dair is diffusion coefficient of VOC in air in 

m2/s, and ν is kinematic viscosity of air at 23°C, which equals 1.544х10-5m2/s (Cengel and Ghajar 

2010). Using this estimated h value, the errors due to neglecting the mass transfer resistance were 

estimated by Eq. (3.32). As shown in Table 3.8, the resulting errors were within 6-8% except for 

benzaldehyde and butanol. These errors are similar to the uncertainty estimated for effective 

diffusion coefficient. Benzaldehyde and butanol had higher errors (18.3% and 11.9%, 

respectively).  It should be noted that the above analysis should be considered as semi-

quantitative because the air flow pattern inside the chamber due to the mixing fan were not 

characterized in detail, and the estimation of the mass transfer coefficient using Eq. (3.33) is a 

very rough approximation.  Nevertheless, the analysis shows that the mass transfer resistance 

could possibly be important even under turbulent flow conditions for more accurate 

determination of the diffusion coefficients, especially when the diffusion coefficients are larger 

than 10-6 m2/s. It was shown (Haghighat et al. 2002) that if laminar boundary layer flow was 

assumed, neglecting boundary layer mass transfer resistance could result in an underestimation 

error as high as 50% for typical indoor building materials and VOCs. Therefore, future 

measurements of the diffusion coefficient using the dual chamber approach should take into 

account the effects of mass transfer resistance for better accuracy. 

Table 3.8 Effective diffusion coefficients using order of magnitude analysis for boundary layer 

resistance 

No. Compound RH 
% 

De (boundary layer resistance 
ignored) 
m2/s 

D (boundary layer resistance 
considered) 
m2/s 

Error(e) 
% 

1 FOR 50 3.28×10-6 3.60×10-6 8.7 
2 TOL 50 1.72×10-6 1.84×10-6 6.7 
3 ACE 50 2.67×10-6 2.92×10-6 8.6 
4 HEX 50 1.55×10-6 1.67×10-6 7.0 
5 BZD 50 4.17×10-6 5.10×10-6 18.3 
6 BUT 50 3.09×10-6 3.50×10-6 11.9 
7 DEC 50 1.17×10-6 1.25×10-6 6.2 
8 FORR 50 3.21×10-6 3.51×10-6 8.5 
9 TOLR 50 2.10×10-6 2.29×10-6 8.2 
10 ACER1 50 2.61×10-6 2.85×10-6 8.4 
11 ACER2 50 2.64×10-6 2.89×10-6 8.5 



www.manaraa.com

 65 

 
3.4.5 Comparison of the measured diffusivity of water vapor with results from the dry cup test 

The Mew value of water vapor in the building material is usually quantified by the standard 

cup test, such as ASTM standard E96/E96M-05(ASTM 2005), which prescribes the procedure to 

measure water vapor transmission (i.e. mass transport rate per unit cup area per unit time) 

through materials. The dry cup test is the transport between environmental chamber air 

(maintained at 50%RH) and the dry cup condition created by desiccant. The relative humidity on 

each side of the specimen is recorded by the RH sensor placed adjacent to the surface. The 

weight gain/loss by diffusion in the specimen is measured continuously by electronic balance 

until an equilibrium state is reached. At the equilibrium state, the Mew value of water vapor can 

be acquired:  

permeancexTR
D

v

air

⋅∆⋅⋅
=µ    (3.36) 

where ∆x = Thickness of the specimen (m)  

Dair = 2.662×10-5 (m2/s), Vapor diffusion resistance in free air  

Rv  = 462 (J/kg k) Gas constant for water vapor 

T   = 296.15 K (23ºC), Test temperature 

Water vapour permeance is defined as (ASTM 2005): 

)(// 21 RHRHSWVTpWVTPermeance −=∆=                                                          (3.37) 

∆p = vapor pressure difference (Pa) 

S   = Saturation vapor pressure at the test temperature (Pa) 

RH1 =relative humidity at the vapor source expressed as a fraction 

RH2 =relative humidity at the vapor sink expressed as a fraction 

WVT = rate of water vapor transmission (g/s/m2) 

The water vapor transmission rate is calculated from dry/wet cup test as: 
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)/( AtmWVT ⋅∆=                                                                                                        (3.38) 

∆m   =  weight change (g) 

t       =  time during which ∆m occurred (s) 

A      = test area (cup mouth area, m2) 

The weight change is measurable by electronic scale at specified time intervals. In contrast, in 

a dual chamber test, the WVT calculation is based on the water vapor mass balance in chamber A 

(or chamber B), which is expressed by: 

AQWVT AAoutAin /).( ρρ −=                                                                                       (3.39) 

ρAout = density of water vapor in the outflow of chamber A (kg/m3) 

ρAin   = density of water vapor in the inflow of chamber A (kg/m3) 

Table 3.9 shows the Mew values in different methods with the corresponding relative 

humidity for the test conditions. In the dual chamber, it was obtained from relative humidity in 

two chambers at steady state. For the cup test, it was obtained from the relative humidity in the 

cup and in the environmental chamber. 

Table 3.9 Comparison of Mew value at equilibrium state by different methods 

Dry cup  Dual chamber Range 1 Range 2 

Outside cup  50.0% RH  Chamber A 41.7% RH 70.0% RH 

Inside cup  15.0% RH Chamber B 35.5% RH 62.8% RH 

Calculated µvapor 6.99 Calculated µvapor 8.75 8.71 

The Mew values for the dual chamber test method were about the same for the two RH 

ranges tested. They were slightly larger than the dry cup test, but the difference was considered 

acceptable considering the different test procedure and a slight difference in moisture range.  The 

dry cup test extended to a lower RH which might have opened up additional small pores in the 

material, resulting a slightly smaller resistance factor (Pazera 2007). Further confirmation of this 

hypothesis is needed. The effective diffusion coefficient (also called diffusivity in the field of 
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Building Physics) of water vapor in calcium silicate in a dual chamber is 3.04×10-6m2/s since 

diffusivity is equal to water vapor diffusivity in free air divided by the Mew value.  

3.4.6 Comparison of VOCs diffusion with mercury intrusion porosimetry 

The diffusion coefficients of the VOCs were also calculated based on the pore volume 

distribution obtained via the mercury intrusion porosimetry (MIP) method (Blondeau et al. 2003). 

Table 3.10 compares the derived diffusion coefficients by MIP method and measured effective 

diffusion coefficients in a dual chamber test. 

Table 3.10 Comparison of diffusion coefficient with MIP method (m2/s) 

Method Formaldehyde Toluene 
MIP 1.07×10-6 0.638×10-6 
Dual Chamber(50%RH) 3.29×10-6 1.72×10-6 

The values obtained by the two methods are in the same order of magnitude, but the diffusion 

coefficient by dual chamber is larger than that in the MIP method. Possible reasons may include 

but are not limited to uncertainties in both the MIP and dual chamber measurements. Further 

investigation is needed. 

3.4.7 Error analysis 

     Based on the error propagation theory (Taylor 1982 and Kline 1985), if the uncertainty of 

each parameter AssC∂ , BssC∂ , L∂ , A∂ , Q∂ is independent and random, the overall uncertainty of 

the effective diffusion coefficient eD∂ can be calculated by the following equations: 
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Refer to the Eq. (3.2), the partial derivatives of the De with respect to CAss(VOC concentration at 

steady state in chamber A), CBss(VOC concentration at steady state in chamber B), L, A and Q are: 
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Inserting Eqs. (3.41a) through (3.41e) in the Eq. (3.40), and the fractional uncertainty of the 

effective diffusion coefficient is derived as in Eq. (3.42):   
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Take one test for example, which is the test for formaldehyde diffusion in calcium silicate 

under 25%RH, at equilibrium, CAss=230.9μg/m3, and CBss=135.5μg/m3. Considering the 

individual fractional uncertainty in Table 3.11 of the five parameters, the overall uncertainty via 

Eq. (3.42) of the effective diffusion coefficient is 6.96%.  

Table 3.11 Uncertainty analysis for various factors in effective diffusion coefficient 

Uncertainty Variations Estimate 
VOC concentration in chamber A PTRMS measurement  δCAss=±1.8%CAss

* 
VOC concentration in chamber B PTRMS measurement  δCBss=±1.8%CBss

* 
Material thickness Thickness measurements δL=±0.1%L 
Material area  Area measurements δA=±0.66%A 
Flow rate Measurement of flow rate δQ=±3.0%Q 

* Only random error is considered here because De and Kma are not affected by the absolute values of concentration per Eq. (3.2) 
and (3.24). The PTRMS was calibrated by the permeation tube with an estimated accuracy of ±10% of measured values. 

     For the uncertainty of partition coefficient, the same analysis method was applied. The 

overall uncertainty of the partition coefficient is more complicated than the effective diffusion 

coefficient because it involves the integration of the VOC concentration as in Eq. (3.24). To 

make the integration possible for the purpose of uncertainty estimation, we used the following 
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empirical equation for a curve fitting to approximate the formaldehyde concentrations in 

chambers: CA = CAss – 10(a-bt), and CB = CBss – 10(c-dt), where a, b, c and d are constants.                                                                                                                           

The partial derivatives of Kma with respect to CAss, CBss, L, A, Q and T are given in Eq. (3.45a) to 

(3.45f), to be consistent. Take formaldehyde under 25%RH test, for example: at equilibrium, it is 

known that a=2.32, b=0.021, c=2.19, d=0.019.  

)021.032.2(109.230 t
AC −−=                                                                                                 (3.43a) 

)019.019.2(105.135 t
BC −−=                                                                                                 (3.43b) 

plug the above two equations in the Eq. (3.24), the partition coefficient is calculated as: 
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refer to Eq. (3.44), the partial derivatives of Kma with respect to CA, CB, L, A and Q are calculated 

step by step in Eq. (3.45a) to (3.45e).  
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The overall uncertainty of maK∂ can be calculated by the following equations:            
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Plug the Eqs. from (3.45a) to (3.45e) into Eq. (3.46), and the fractional uncertainty of the 

partition coefficient is derived as in Eq. (3.47). Considering the individual fractional uncertainty in 

Table 3.12 of the six parameters, the overall uncertainty of partition coefficient is 3.35%.  
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Table 3.12 Uncertainty analysis for various factors in partition coefficient 

Uncertainty Variations Estimate 
Material volume Volume measurements δVmat=±0.67%Vmat 
Flow rate Measurement of flow rate δQ=±3.0%Q 
VOC concentration in chamber A PTRMS measurement  δCAout=±1.8%CAout 
VOC concentration in chamber B PTRMS measurement  δCBout=±1.8%CBout 
Time Determination of test period δT=±10%T 
 
3.5 Verification of similarity theory by particleboard 

The similarity coefficients calculated for formaldehyde, acetaldehyde, hexanal, toluene and 

decane were averaged to be 0.518 with a standard deviation of 0.039. Using the similarity theory, 

a simulation of the emission from particleboard in small chamber was conducted to compare 

with the emission profile under environmental conditions of 1 1/h in air change rate, 23 ºC and 

50%RH.  Two VOCs were selected from the emitted VOCs, which were acetaldehyde and 

hexanal.  The initial VOC concentration and partition coefficient of VOCs in particleboard were 

directly measured by VOC extraction method under the temperature 23 ºC. 

Table 3.13 summarizes the critical parameters in the simulation set up of emission test for 

particleboard. Figure 3.13 shows the comparison between simulated acetaldehyde and hexanal 

concentrations with measurements. 
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Table 3.13 Critical parameters in the simulation setup of emission test for particleboard 
Compound kvoc Kma ACH 

(1/h) 
C0 

(g/m3) 
Temperature 
(ºC) 

Grid 
number 

Acetaldehyde 0.518 4325 1 17.61 23 700 
Hexanal 0.518 4419 1 40.18 23 700 
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Figure 3.13 Comparison of simulated acetaldehyde and hexanal concentrations from 
particleboard with measurements 

It is found that there is good agreement between predicted/simulated concentrations based 

on the pre-determined similarity coefficient and measured concentrations for acetaldehyde and 

hexanal, which supports the application of similarity theory in particleboard for the two 

compounds. It also indicates that similarity theory is not only valid for calcium silicate 0.3μm-

0.8μm, but also for other porous material like particleboard, whose pore size covers a larger span 

of diameters 1.6μm-195μm as illustrated in Figure 3.14. 
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Figure 3.14 Pore volume distribution of particleboard 

Besides acetaldehyde and hexanal, particleboard emitted more VOCs such as formaldehyde, 

α-pienene, pentanal, octanal and toluene. These compounds did not follow the decay trend, so 
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they were not selected for the comparison of CHAMPS-BES modeling. Their initial 

concentrations and partition coefficients are presented in Table 3.14.  

Table 3.14 Initial concentrations and partition coefficients of unselected emitted compounds 

from particleboard 

Compounds C0(g/m3) Kma 
Formaldehyde 61.06 28326 
Alpha-pinene 27.25 2866 
Toluene 1.86  
Pentanal 13.37 4413 
Octanal 9.25 8207 

 

3.6 Implementation of Similarity Theory in CHAMPS-BES 

3.6.1 Governing equation 

In the current CHAMPS-BES model, several assumptions are made regarding the VOC 

transport in storage in a porous medium: 

1) Only one VOC component is present in the gas phase and in the adsorbed phase; no 

chemical reactions with other components are considered; 

2) There is no VOC dissolution in the liquid water phase if capillary water condensation takes 

place; VOC adsorption and desorption is rather an interaction of the solid matrix with the gas 

phase;  

3) Within an elemental representative volume, there is thermodynamic equilibrium between 

VOCs in the gas phase and the adsorbed phase; no differentiation between adsorbed surface layers 

and absorption in small pores;. 

The total VOC flux consists of a convective and a diffusive part; the convective flux is caused 

by air convection only; all other VOC flux can be treated or approximated as a Fickian diffusion 

process, which includes diffusion in the gas phase, surface diffusion on the solid matrix and 

transport in micro pores. 
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With the assumptions above, the VOC mass balance can be written as 

, , , ,voc l g voc g voc g voc l gmm m m
REV conv diff REVj j

t x
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With known convective air flux, the calculation of the convective VOC flux in equation (3.48) 

is a straight forward procedure. The VOC mass concentration in the gas phase can be calculated by 

the total VOC density in the reference volume divided by a partition coefficient. The partition 

coefficient is a function of temperature. Using a reference partition coefficient and a VOC 

saturation density ratio as a temperature correction as shown below implies that partition coefficient 

is inversely proportional to the saturated vapor density of the VOC. The partition coefficient at 

reference temperature is experimentally determined for material-VOC combinations of interest. 

The dependence of the VOC saturation density is a thermodynamic property of the VOC. 
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The diffusive VOC flux in equation (3.48) can be calculated using similarity theory. Similarly to 

the calculation method of the vapor diffusion flux in Building Physics, the VOC diffusion 

coefficient in free air can be related to a VOC diffusion resistance factor. In Building Physics, a 

water vapor diffusion resistance factor is attributed to the combined effect of both porosity and 

tortuosity. A resistance factor for VOC diffusion in a porous material can be introduced that 
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accounts for porosity and tortuosity effects as well as for surface diffusion on the solid matrix and 

transport in micro pores.  
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The diffusion coefficient in free air is a known thermodynamic property of the VOC. The 

VOC-diffusion resistance factor depends on both the material and the VOC, and has to be 

determined experimentally, at least for groups of VOCs if not individually. 

3.6.2 Model input 

In order to perform simulations of VOCs emission from a porous material using CHAMPS-

BES, the following input data are necessary: geometry and construction, materials and material 

properties, initial conditions, boundary conditions, outputs selections and formats, modeling 

options and solver settings. 

3.6.2.1 Materials and Material Properties 

Material properties include basic material properties such as density, specific heat, heat 

conductivity, porosity, effective porosity, torturosity and air permeability. 

Material properties also include material functions such as water retention curve, reversed water 

retention curve, liquid water diffusivity and water vapor permeability. 

3.6.2.2 VOC properties 

VOC properties include VOC data and VOC/material data. 



www.manaraa.com

 75 

VOC data include the VOC name, alternative descriptive name(s), and/or CAS number, 

molecular formula, molar weight in kg/mol, and the liquid density of the VOC in 

[kg(VOC)/m3(VOC)], , ( )vocm
g sat Tρ curve and ( )airD T  curve. 

VOC-material data include the VOC name, material ID name, similarity coefficient (diffusion 

resistance correction factor), and partition coefficient as a function of temperature.  

3.6.2.3 Created VOC database and material characterization for calcium silicate and particleboard 

A VOC database in Textpad is created in appendix A. The VOC database includes VOC 

properties and VOC/material properties. Six VOCs are included: formaldehyde, acetaldehyde, 

benzaldehyde, hexanal, toluene and butanol. VOC/material properties include 

formaldehyde/calcium silicate, acetaldehyde/calcium silicate, benzaldehyde/calcium silicate, 

hexanal/calcium silicate, toluene/calcium silicate, butanol/calcium silicate, 

acetaldehyde/particleboard, and hexanal/particleboard. 

The material characterization for calcium silicate and particleboard is implemented in the 

CHAMPS software. 

The database can be used for simulation of these six VOCs from the materials which are 

available in the material characterization section.  

3.7 Conclusion 

1. A dynamic dual chamber method was developed to measure both water vapour 

and VOCs diffusion through porous building materials and furniture materials with good 

repeatability. The effective diffusion coefficient and partition coefficient were obtained 

independently, with an uncertainty of 6.96% and 3.35%, respectively. The water vapor 

diffusivity measured using the dual chamber method was in reasonable agreement with that 

measured by the conventional “dry cup method” for water vapor transmission tests for the 
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range of relative humidities tested. The VOC diffusivity measured by the dual chamber 

method was comparable to that measured by mercury intrusion porosimetry method. 

2. The differences between three definitions of effective, apparent, and pore 

diffusion coefficients were elucidated.  The relationships between these three diffusion 

coefficients were also established. 

3. A similarity coefficient has been proposed to correlate the pore diffusion 

coefficient of VOCs with that of water vapor for hygroscopic moisture conditions in which 

open pore porosity does not change significantly. Values of the similarity coefficients were 

determined for formaldehyde, toluene, acetaldehyde, benzaldehyde, hexanal, butanol and 

decane for a reference material--the calcium silicate. The similarity coefficient can be used to 

estimate the VOC diffusion coefficient if the water vapor diffusivity is known for the same 

material based on the conventional “dry cup method”. The application of similarity theory in 

particleboard was also validated by the comparison of measured acetaldehyde and hexanal 

with simulated concentrations.  

4. VOCs database files containing VOC properties and VOC/material properties 

were established for two materials, and implemented as part of the input data file for 

modeling material emissions using the CHAMPS-BES software. The material 

characterizations for calcium silicate and particleboard were also implemented in CHAMPS. 
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Chapter 4 Effects of Relative Humidity on VOCs’ Effective Diffusion 

Coefficient and Partition Coefficient in Porous Mediums 

4.1 Introduction 

     The objectives of this study were: 1) to investigate the influence of relative humidity on 

the effective diffusion coefficient and partition coefficient of VOCs in a porous media. The 

purpose was to improve the understanding of the mechanism of VOC sorption and transport in a 

relatively simple material when subjected to moisture influence. Formaldehyde was chosen as a 

representative soluble compound and toluene as a non-soluble compound. 2) The relationship 

between effective diffusion and partition coefficients with VOCs’ properties was explored. 

Besides formaldehyde and toluene, five more VOCs (acetaldehyde, hexanal, benzaldehyde, 

butanol, and decane) were measured at the same temperature 23ºC and humidity condition 50% 

RH for this investigation. 3) Finally, the competition between gas phase multi-VOCs was 

measured by testing a mixture of formaldehyde and toluene as well as individual compounds.  

4.2 Experiment 

4.2.1 Test setup and principle 

The same dynamic dual chamber method (Xu et al. 2009) was still used. The schematic of the 

test system was provided in chapter 3. The effective diffusion coefficient obtained from dynamic 

dual chamber also included the effects of convective mass transfer resistance through the air film 

on either surfaces of the material, which are negligible as compared to in-material diffusion 

resistance except in very permeable materials. At steady state, mass balance for chamber B 

requires that A B
B B e

C CC Q AD
L
−

=  . Therefore, the effective diffusion coefficient of the VOC is 

calculated as: 

B
BA

B
e Q
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CC
CD
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where De is effective diffusion coefficient in m2/s. CA and CB are the VOC concentrations in 

the air phase of chamber A and B in kg/m3, respectively (Note: CA=CAout and CB=CBout assuming 

perfect mixing in both chambers). CA and CB were averaged from the last three data points when 

the system reached steady state. L is the thickness of the material in m. A is the specimen material 

area exposed to the air in m2. QB is the flowrate into chamber B in m3/s. Partition coefficient Kma 

(dimensionless) can be obtained as: 

[ ]
0

2  ( )  2 /
( )

T

A Ain A B Bmat
ma

A B A B mat

Q C C Q C dtM VK
C C C C V

− −
= =

+ +
∫                                                           (4.2)                                                         

where Vmat is the volume of the test specimen in m3. In Eq. (4.2), M is the total VOC mass in the 

material in kg, which can be obtained by the integration of the continuous concentration profile 

of CA and CB, while CA and CB were obtained as discrete data points. QA and QB are the flowrates 

into chamber A and B, respectively, in m3/s. CAin is the inlet VOC concentration of chamber A in 

kg/m3. The partition coefficient is a storage parameter and is the ratio of the VOCs’ 

concentration in the material to its concentration in the air at equilibrium. In order to reproduce 

the continuous concentration file, a curve fitting process for CA and CB was needed based on the 

measured data points of CA and CB. The CHAMPS model (Grunewald et al. 2007, Li 2007 and 

Zhang 2005) that describes the diffusion and sorption process was used for obtaining the best-fit 

curve for numerical integration with a time interval of 1 minute. The calculation equation was: 

[ ]∑ ∆−−= tCQCCQM BoutBAoutAinA )(                                                                             (4.3) 

4.2.2 Test specimens   

Calcium silicate was still selected as a reference material in this study due to its well-

characterized moisture diffusion properties and wide usage as a building insulation material. In 

addition, calcium silicate is a clean material, which means that it has no VOCs added in the 

fabrication. The specimen was cut into 30.5cm ×30.5cm ×1.0cm. 
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     Conventional gypsum wallboard, “green” gypsum wallboard, and “green” carpet were 

shipped in the size of 30.5 cm ×30.5 cm ×1.27 cm, which was also the size of the test specimen.  

Upon receipt, all the materials were stored in a specimen storage room under 23 °C. Prior to the 

test, the four edge sides of the material were sealed with VOC-free tape to prevent formaldehyde 

diffusion through the edges. Pictures of the sealed test specimens (conventional wallboard, 

“green” wallboard, “green” carpet) are presented in Fig. 4.1. A picture of calcium silicate was 

already presented in Fig. 3.5. 

The specimen was then placed in a specially prepared steel specimen holder between two 

chambers, and clamped tightly together. 

 

   

(a) Front                                                      (b) Back 

Conventional wallboard 
 

  
(a) Front                                                      (b) Back 

“Green” wallboard 
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(a) Front                                                      (b) Back 

“Green” carpet 

Figure 4.1 Pictures of conventional wallboard, “green” wallboard, and “green” carpet 

4.2.3 Differences in the composition of two wallboards 

The conventional wallboard and “green” wallboard were painted with the same paint and air 

dried for the same time period. The conventional wall board consisted primarily of gypsum, with 

a paper surfacing on the face, back and long edges. The “green” wallboard was paperless and 

featured fiberglass mats on both sides for superior moisture protection. Two kinds of wallboards 

were made by different companies.   

4.2.4 Experimental Design 

A total of 27 experiments were performed (Table 4.1) to achieve the research objectives. 

4.2.4.1 Repeatability of test 

As mentioned in chapter 3, in order to evaluate the accuracy and reliability of the dynamic 

dual chamber method for calcium silicate, repeat tests of formaldehyde, toluene, and acetaldehyde 

at 50%RH were conducted. Additionally, for conventional wallboard, one repeat test of 

formaldehyde at 50%RH was conducted. 

4.2.4.2 Effect of relative humidity 

For calcium silicate, water soluble formaldehyde and non-soluble toluene were tested for 

three relative humidity conditions: 25%, 50%, and 80% RH.  
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For conventional wallboard, “green” wallboard and “green” carpet, formaldehyde was tested 

for three levels of humidity conditions: 20%, 50%, and 70% RH. 

4.2.4.3 Effect of mixture 

In indoor air, there is not just one kind of VOC in the building; most of the time many kinds 

coexist. Gas phase VOCs can compete for the available adsorption site. Mixtures of 

formaldehyde and toluene were tested at 50%RH in calcium silicate to investigate if there was 

evidence of competition between the two compounds for adsorption.  

4.2.4.4 Relationship between VOC properties and De&Kma 

 In an effort to establish the relationship of diffusion/partition coefficients and VOCs’ 

properties, besides formaldehyde and acetaldehyde, more VOCs in calcium silicate were tested. 

They were aldehyde, hexanal, benzaldehyde, butanol and decane, which are all common VOCs 

detected in material emissions. Physicochemical properties of the seven selected VOCs are listed 

in Table 4.2.  

Table 4.1 Experimental design and the conditions  

Calcium silicate 

No. Compounds RH CAin 

(µg/m3) 
QA=QB 
(m3/h) 

Test purpose 

1 FOR 25 372 

0.0658 

Effect of relative humidity on effective 
diffusion coefficient and partition coefficient 2 FOR 50 372 

3 FOR 80 372 
4 TOL 25 383 
5 TOL 50 383 
6 TOL 80 383 
7 FORR 

50 
 

372 

0.0658 

Evaluate the accuracy and reliability of 
dynamic dual chamber method in measuring 
effective diffusion coefficient and partition 
coefficient  

8 TOLR 383 
9 ACER1 374 
10 ACER2 374 
11a FORM 50 

 
372 0.0658 Effect of VOC mixture 

11b TOLM 383 
12a FORM,R 50 372 0.0658 Repeat the mixture test 
12b TOLM,R 383 
13 ACE 

50 

374 0.0658 Establish the relationship of 
diffusion/partition coefficient and VOC 
properties 

14 HEX 128 0.0352 
15 BZD 401 0.0658 
16 BUT 383 0.0658 
17 DEC 372 0.0658 

Conventional wallboard 
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18 FOR 20 4080 0.0307 Effect of relative humidity on effective 
diffusion coefficient and partition coefficient 
and evaluate the repeatability of the method 

19 FOR 50 4080 0.0307 
20 FORR 50 4080 0.0307 
21 FOR 80 4080 0.0307 

“Green” wallboard 
22 FOR 20 4080 0.0307 Effect of relative humidity on effective 

diffusion coefficient and partition coefficient 23 FOR 50 4080 0.0307 
24 FOR 80 4080 0.0307 

“Green” carpet 
25 FOR 20 4080 0.0307 Effect of relative humidity on effective 

diffusion coefficient and partition coefficient 26 FOR 50 4080 0.0307 
27 FOR 80 4080 0.0307 

• In compound name, FOR represents formaldehyde; TOL represents toluene; ACE is acetaldehyde; HEX is 

hexanal; BZD is benzaldehyde; BUT is butanol; DEC is decane  

• In superscript, R means repeat test; R1 means the first repeat test; R2 means the second repeat test; M 

means mixture test. 

Table 4.2 Physicochemical properties of the selected VOCs 

Compound Chemical 
 class 

CAS # Formula MW 
(g/m
ol) 

Density(23
°C,kg/m3) 

Vapor 
Pressure 
(23°C,mm
Hg) 

Polarity 
(debye) 

Henry’s 
law 
constant((
mol/L3)/a
tm),23°C  

FOR Aldehyde 50-00-0 CH2O 30 1.09×10-3 3643.8a  2.3i 2743c 
ACE Aldehyde 75-07-0 C2H4O 44 0.79×10-3 837.5h 2.5i 12c 
HEX Aldehyde 66-25-1 C6H12O 100 0.83×10-3 10.00f nad 4.2c 
BZD Aldehyde 100-52-7 C7H6O 106 0.98×10-3 1.06g 2.8i 35c 
BUT Alcohol 71-36-3 C4H9OH 74 0.81×10-3 6.5b 1.8i 110c 
TOL Aromatic 108-88-3 C7H8 92 0.86×10-3 25.8b 0.4i 0.14c 
DEC Alkane  124-18-5 C10H22 142 0.73×10-3 1.18b 0.0i 1.4х10-4 e 

a Obtained from Lide, D.R. 2009, CRC handbook of chemisty and physics. 90th edition. CRC press 

b Obtained from Vargaftik, N.B. 1975. Tables on the thermophysical properties of liquids and gases, John Wiley & Sons, Inc. 
c Converted to 23°C from the value at 25°C obtained from [21] Sander R., 1999, Compilation of Henry's Law Constants for 

Inorganic and Organic Species of Potential Importance in Environmental Chemistry (Version 3), http://www.henrys-law.org 

d Not available in the literature  
e The value provided here is at 25°C. The conversion from 25°C to 23°C is not possible because of the lack of the necessary 

data 

f Obtained from Bodalal, A., Zhang, J., Plett, E., Zhu, J., 2001. Correlations between the internal diffusion and equilibrium 
partition coefficients of volatile organic compounds (VOCs) in building materials and the VOC properties. ASHRAE Transactions 
107(1), 789-800. 

g Obtained from An, Y., Zhang, J., Shaw, C.Y., 1999. Measurements of VOC adsorption/desorption characteristics of typical 
interior building material surfaces. International Journal of HVAC & R Research 5(4), 297-316. 

h Obtained from Boublik, T., Fried, V., and Hala, E. 1984, The vapour pressures of pure substances: selected values of the 
temperature dependence of the vapour pressures of some pure substances in the normal and low pressure region. Amsterdam: 
Elsevier 

i Obtained from Korea thermophysical properties data bank. Korean national chemical engineering research information 
center. http://www.cheric.org/research/kdb/hcprop/showcoef.php?cmpid=1232&prop=PVP 
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4.2.5 Instrument conditions-calibration experiments 

Two different VOC measurement instruments, HPLC and PTRMS, were adopted in the 

measurement of formaldehyde. They were calibrated against the certified permeation tube from 

VICI Corporation. The emission rates of the permeation tube for formaldehyde and toluene were 

408ng/min and 420ng/min, respectively. PTRMS calibration was completed by adjusting the 

dilution flow from an isolated RH controlled system other than the dilution flow from the 

Dynacalibrator. The temperature was maintained at 23 ºC for all the calibrations. Figure 4.2 (a)-(f) 

displays the calibration results of both HPLC and PTRMS under different RHs. The linearity 

coefficient was around 0.99 for all the cases, which indicated a good linearity for both HPLC and 

PTRMS. Note that the HPLC response factor for formaldehyde was 0.91, and the PTRMS’ 

response factor was around 0.40~0.50 for toluene. The PTRMS’ response factor for 

formaldehyde was 0.91 at 25%RH, while it was 0.18 and 0.11 at 50%RH and 80%RH, 

respectively. The calibration results for the tests of conventional wallboard, “green” wallboard 

and “green” carpet are provided together with the test results in Appendix B. 
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Figure 4.2 Calibration results for calcium silicate 

4.3 Results and discussion 

4.3.1 Calcium silicate 

The test results of repeat tests of formaldehyde, toluene and acetaldehyde under 50%RH 

were already given in Fig. 3.12 (a, b and c). The repeated test of each VOC agreed well with the 

first test. The results presented in Table 4.3 include the relative humidity or VOCs concentration 

at equilibrium, the effective diffusion coefficients, the partition coefficient, µvoc for VOCs (µvoc is 

the diffusion resistance factor for VOC in the material, which is calculated as Dair/De), and the 

similarity coefficient kvoc. The similarity coefficient is the ratio of the diffusion resistance factor of 

VOC (µvoc) to that of water vapor, which is calculated as µvoc/µvapor. The diffusion coefficient in air 

is obtained from literature (Nelson 1992). µvoc and kvoc in Table 4.3 are also needed as input 

parameters for the VOC database of CHAMPS-BES (Grunewald et al. 2007), a coupled heat, air, 

moisture and pollutant simulation program for porous media and building envelope systems.  

Table 4.3 Results of 17 tests for calcium silicate 

No. Compound RH 
% 

CAin 

μg/m
3 

CAout 

μg/m
3 

CBout 

μg/m
3 

Dair(23°C) 
m2/s 

De 

m2/s 
Kma µvoc 

1 FOR 25 372.0 230.9 135.5 1.49×10-5 3.08×10-6 2574 4.83 
2 FOR 50 366.4 226.1 136.1 1.49×10-5 3.28×10-6 2597 4.54 
3 FOR 80 353.4 217.0 126.5 1.49×10-5 3.03×10-6 4057 4.91 
4 TOL 25 354.7 238.1 105.8 8.40×10-6 1.73×10-6 288 4.84 
5 TOL 50 372.7 267.4 118.2 8.40×10-6 1.72×10-6 133 4.89 
6 TOL 80 363.4 266.5 114.3 8.40×10-6 1.63×10-6 76 5.15 
7 FORR 50 385.6 231.4 138.1 1.49×10-5 3.21×10-6 2568 4.64 
8 TOLR 50 379.6 253.6 124.7 8.40×10-6 2.10×10-6 123 4.00 

(e) Toluene in 50%RH (f) Toluene in 80%RH 
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9 ACER1 50 359.2 222.2 121.3 1.12×10-5 2.61×10-6 232 4.29 
10 ACER2 50 357.5 217.9 119.6 1.12×10-5 2.64×10-6 283 4.24 
11a FORM 50 370.8 248.2 147.2 1.49×10-5 3.16×10-6 3775 4.71 
11b TOLM 50 433.7 320.8 147.8 8.40×10-6 1.85×10-6 134 4.53 
12a FORM,R 50 290.8 182.2 104.8 1.49×10-5 2.94×10-6 3656 5.07 
12b TOLM,R 50 376.7 262.8 113.5 8.40×10-6 1.65×10-6 141 5.09 
13 ACE 50 367.9 227.6 125.6 1.12×10-5 2.67×10-6 221 4.19 
14 HEX* 50 128.1 60.8 34.8 6.71×10-6 1.47×10-6 7809 4.56 
15 BZD 50 390.9 227.5 149.6 6.99×10-6 4.17×10-6 16111 1.68 
16 BUT 50 370.5 218.7 128.4 8.52×10-6 3.09×10-6 18100 2.76 
17 DEC 50 356.8 218.5 76.7 5.25×10-6 1.17×10-6 / 4.47 
• The standard deviation of the mean for measured concentrations is +/- 1.8% 

•  The volume of the specimen Vmat=8.53×10-4 m3 

• * means the flowrate for this test is different from other tests 

4.3.1.1 Effect of relative humidity 

Formaldehyde and toluene were tested under three different relative humidity conditions: 

25%, 50% and 80% RH (see Fig. 4.3 and Fig. 4.4). Considering the uncertainty of the results, the 

influence of relative humidity on the effective diffusion coefficient of both formaldehyde and 

toluene is not significant. The partition coefficient of formaldehyde in calcium silicate did not 

change when the humidity changed from 25%RH to 50%RH, but it increased by 56% when the 

humidity further increased to 80%RH. The increase of the partition coefficient of formaldehyde 

was likely due to formaldehyde absorption into the liquid water under the higher humidity 

condition. The hygroscopic sorption isotherm of moisture in the material can be obtained using 

standard procedures (ASTM 2001). The partition coefficient of toluene decreased slightly with 

increasing humidity conditions from 25%RH to 80%RH. This finding agreed with those reported 

in (Huang et al. 2006), who presented that the partition coefficient of methanol decreased as 

relative humidity increased. It is likely that water vapor molecules competed with toluene 

molecule for available adsorption sites.  
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Figure 4.3 Test results under different relative humidity 

 

        
  
 
 

Figure 4.4 Effect of relative humidity on effective diffusion coefficients and partition coefficients 
 
4.3.1.2 Effects of mixture 

A mixture of formaldehyde and toluene was tested at 50%RH (see Fig.4.5). For toluene, there 

was also no obvious change compared to the single compound test of toluene. For formaldehyde, 
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the effective diffusion coefficient decreased in the mixture test. The partition coefficient of 

formaldehyde was also larger in the mixture test compared to formaldehyde alone test.  

  

Figure 4.5 Comparison of results between mixture and single compounds 

(“M” represents “mixture test”, “ S” represents “single test”, “R” means “repeat test”) 
 

To verify the phenomenon, another mixture test was performed. The test period was 

extended because the first test indicated that it took a longer time for formaldehyde to reach 

equilibrium in the mixture test. The results are shown in Fig. 4.5. The calculated diffusion and 

partition coefficients are consistent with the previous conclusion. It is not clear what could have 

caused such a phenomenon and further investigation is needed. 

4.3.1.3 Relationship between Kma & De and VOC properties   

In addition to formaldehyde and toluene, butanol, benzaldehyde and hexanal were also tested 

at 50% (Fig. 3.13). For the VOCs in the same chemical class, the partition coefficients were 

inversely proportional to the vapor pressure of the compounds (Cox et al. 2001 and Bodalal et al. 

2001). For the three aldehydes (benzaldehyde, hexanal and acetaldehyde), this relationship was 

further confirmed (Fig. 4.9). If the vapor pressure of formaldehyde was known as 3643.8 mmHg, 

based on the inversely relationship with the vapor pressure alone, the partition coefficient of 

formaldehyde predicted by the equation established from benzaldehyde, hexanal and 

acetaldehyde was 33.0. However, experimental data in Fig. 4.9 showed that the measured 

partition coefficient of formaldehyde, which was 2597, was obviously much higher than the 
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prediction. Compared to these three aldehydes, the Henry’s law constant of formaldehyde was 

significantly larger than those of the other aldehydes. Therefore, the partition coefficient of 

VOCs was not simply inversely proportional to the vapor pressure of the compound, but also 

increased with the higher Henry’s law constant. In other words, at relatively high relative 

humidity where moisture content is significant in the material, the partition coefficient of a water-

soluble compound such as formaldehyde depends on the Henry’s law constant as well as vapor 

pressure. Further study is needed to establish the relationship between them.  
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Figure 4.6 Comparison of predicted and measured partition coefficient of formaldehyde 

4.3.2 Conventional and “Green” gypsum wallboard 

Four tests of conventional wallboard and three tests of green wallboards were completed. 

During the test for carpet, the carpet was highly permeable, and hence significant effort was 

added to upgrade the system for controlling and measuring the pressure difference across the test 

specimen so that convective flux could be compensated for in the calculation of effective 

diffusion coefficient. The permeability of the carpet specimen has already been measured, which 

enabled the calculation of convective flux based on the online monitored minimal pressure 

difference across the test specimen (<2 Pa). The carpet test will be discussed separately in section 

4.3.3. 
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The environmental conditions (temperature and relative humidity) were recorded 

continuously during all the tests. Table 4.4 shows the mean value and the standard deviation of 

actual measured values. RHA and RHB represent the relative humidity in chambers A and B, 

respectively. In the tests of green wallboard, the temperature was slightly lower than the 

designated temperature (23 °C), and also had a larger standard deviation than desired, but the 

temperature was consistent among the three green wallboard tests allowing direct comparison 

between these tests to identify the RH effect on the effective diffusion coefficient and partition 

coefficient for green wallboard. Relative humidity was controlled well within ±5% of the set 

points. 

Table 4.4 Summary of recorded environmental conditions in wallboard tests 

Specimen Designated 
RH (%) 

Measured 
Temperature(°C) 

Measured RHA 

(%) 
Measured RHB 

(%) 
Conventional 
Wallboard 

20 23.2±1.0 21.7±0.3 21.0±0.5 
50 23.7±0.7 51.2±0.3 49.3±0.5 
50 repeat 23.5±0.3 51.2±0.3 49.3±0.4 
70 23.7±1.1 70.4±0.9 68.2±1.2 

Green wallboard 20 21.1±1.3 21.9±0.2 21.7±0.4 
50 21.6±1.9 51.7±0.5 50.7±0.6 
70 21.4±1.5 69.6±1.2 68.4±1.6 

 
4.3.2.1 Repeatability between duplicate tests at the same humidity condition  

In terms of the effective diffusion coefficient and partition coefficient, the repeatability for 

conventional wallboard at the same relative humidity was good. The relative difference between 

the two duplicate tests was 4.26% and 7.40% for the effective diffusion coefficient and the 

partition coefficient, respectively (Table 4.5). 

Table 4.5 Repeatability of conventional wallboard at 50%RH 

 50%RH 50%RH(repeat) Difference Average 
De(m

2/s) 6.34×10-8 6.61×10-8 4.26% 6.48×10-8 
Kma 446 479 7.40% 463 
 

The detailed test results at different levels of relative humidity were presented in Appendix 

4.1, which included the individual reports of ten tests (four conventional wallboards, three green 
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wallboards and three green carpets). The summarized results of two kinds of wallboards were 

listed in Table 4.6, which included five parameters: the supply formaldehyde concentrations into 

chamber A, the equilibrium concentrations at both chambers and the effective diffusion 

coefficients and partition coefficients at each test condition. 

Table 4.6 Summary of test results of wallboard tests 

No Materials  RH 
condition 
(%) 

CAin 
(μg/m3) 

CAout 
(μg/m3) 

CBout 
(μg/m3) 

De 
(m2/s) 

Kma 

18 Conventional 
wallboard  

20 2662.8 2603.4 72.9 3.67×10-8 304 
19 50 3106.0 2921.7 138.8 6.34×10-8 446 
20 50 (repeat) 2665.9 2500.8 124.1 6.61×10-8 479 
21 70 2443.2 2274.7 163.3 9.84×10-8 404 
22 "Green" 

wallboard  
20 2649.5 2244.3 260.1 1.65 ×10-7 1100 

23 50 2715.9 2178.8 330.2 2.24 ×10-7 1205 
24 70 1591.2 1007.6 275.7 4.73 ×10-7 1325 

 
4.3.2.2 Relative humidity effect 

Figure 4.7 shows the derived effective diffusion coefficient and partition coefficient at three 

levels of relative humidity (20% RH, 50% RH, and 70% RH). A higher relative humidity led to a 

slightly larger effective diffusion coefficient for both conventional wallboard and green wallboard. 

The small increase is likely due to more frequent collisions between formaldehyde and water 

vapor molecules. At a higher relative humidity, the amount of adsorbed moisture in the material 

would also be higher. If the surface diffusion plays a role in the moisture transport, it is then 

plausible that the higher adsorbed moisture content at a higher RH value also contributed to the 

increase of the effective diffusion coefficient of formaldehyde due to its water solubility. These 

hypotheses need to be investigated further in future studies that also include detailed 

measurements of the moisture retention curve as well as the diffusion of a mixture of gases 

(formaldehyde and water vapor in this case). From 20% RH to 50% RH, the partition coefficient 

of formaldehyde in conventional wallboard became larger. From 50% RH to 70% RH, the 

partition coefficient of formaldehyde in conventional wallboard decreased slightly. Considering 

that the decrease was less than 3 times the level of experimental uncertainty, the relative humidity 
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effect from 50% RH to 70% RH on the partition coefficient in conventional wallboard may be 

considered insignificant. Again the higher adsorbed moisture content in the material at a higher 

RH value is likely to be responsible for the increase of the high partition coefficient due to the 

water-soluble nature of formaldehyde, but its impact is expected to be different from one RH 

range to another because of the non linear nature of the moisture retention curve. It is likely that 

from 20% RH to 50% RH, the increase of adsorbed moisture is higher than from 50% RH to 

70% RH as most porous materials tend to have a relatively flat curve in the 30% to 70% RH 

range compared to the ranges of 0 to 30% RH and 70% to 100% RH. 

The partition coefficient of formaldehyde in green wallboard increased slightly with the 

increase of relative humidity, probably due to the soluble nature of formaldehyde, which was 

absorbed more into the adsorbed moisture at a higher relative humidity. 

 
 

Figure 4.7 Comparison of effective and partition coefficients of wallboards at different RHs 
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4.3.2.3 Comparison of conventional and green wallboard 

In Fig. 4.8, the results of conventional and green wallboard were plotted together. By 

comparison, the effective diffusion coefficient of green wallboard at each level of relative 

humidity was significantly larger than that of conventional wallboard. In other words, the 

diffusion resistance of green wallboard was smaller than the diffusion resistance of conventional 

wallboard. The partition coefficient of green wallboard at each level of relative humidity was also 

larger than conventional wallboard, indicating that the green wallboard had a larger storage 

capacity for formaldehyde. However, the lower test temperature in the “green” wall board test 

than in the conventional wall board test (21 vs. 23 oC) contributed, and may or may not account 

for all the increase in the partition coefficients. These parameters require further analysis to 

account for the temperature effect.  

  
 

Figure 4.8 Comparison of conventional and “green” wallboard 

Both the conventional and “green” wallboards had a water-based paint. As a result, the data 

represented above included the effects of RH on the formaldehyde transport and storage in the 

paint layer as well as the gypsum material. Separate tests would be needed to separate the effects 

on the two materials and determine the diffusion and partition coefficients for individual 

materials as well as the material systems (i.e., painted boards) in the current study. 
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4.3.3 “Green” carpet 

4.3.3.1 Permeability test 

The carpet was found to be very permeable. Even a small pressure difference across the test 

specimen (in the order of 0.2 Pa) can result in significant convection flux, which needs to be 

corrected in the calculation of the diffusion coefficient. In order to obtain the convection flux, a 

permeability test for the carpet was conducted. 

In the permeability test, the outlet of chamber A and the inlet of chamber B were blocked. 

The fresh air QAin was supplied into chamber A and the flow was out through the outflow of 

chamber B QBout as shown in the Fig. 4.9 below: 

 

Figure 4.9 Principle of permeability test 

During measurement, the flow of chamber A was adjusted from low to high to achieve 

different pressure drops (ΔP) between chamber A and chamber B. The pressure drop was 

measured by the differential pressure transmitter (Model DXLdp, ASHCROFT, Stratford, CT). 

The range of the pressure transmitter was -24.9Pa~24.9Pa and the accuracy was 0.25%. The 

volumetric flow rate QBout was measured by a bubble flow meter (model 709, SKC UltraFlo, 

Orlando, FL). The range was 1~6000 cc/min and the accuracy was 0.5%. The permeability of the 

carpet was calculated by the following equation: 

)/( PAjLjA
L
P

∆=⇒=
∆ δδ                                                                                                   (4.4) 

A B 

ΔP 

QAin 

QBout 
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The thickness of the carpet was 1.27 cm and the exposed area of the installed specimen was 

measured as 0.085 m2. Table 4.7 presents the measured QBout and the corresponding pressure 

drops.  The permeability of the carpet was also calculated under different flowrates. The average 

value of permeability is calculated in the last row of the table, at 1.05×10-5. 

Table 4.7 Results of permeability test 

QBout(cc/min) 496.7  1111  2181  3178  4052  5075  
QBout (m3/s) 8.28×10-6 1.85×10-5 3.64×10-5 5.30×10-5 6.75×10-5 8.46×10-5 
Air density ρ at 
23ºC(kg/m3) 1.192 

mass flux 
j=ρQBout(kg/s) 9.87×10-6 2.21×10-5 4.33×10-5 6.31×10-5 8.05×10-5 1.01×10-4 

Pressure drop 
under different 
flowrates ΔP(Pa) 

0.12  0.34  0.61  0.91  1.18  1.51  

Permeability 
(kg/mPas) 1.22×10-5 9.81×10-6 1.06×10-5 1.03×10-5 1.02×10-5 9.94×10-6 

Average 
permeability 
(kg/mPas) 

1.05×10-5 
 

 

The relationship of pressure drop to mass flux is linear is illustrated in Fig. 4.10. The 

calculated permeabilities under six different flowrates are very close, except that the measured 

permeability under 496.7cc/min is slightly larger, which is mainly attributable to the relatively low 

pressure drop measured, since the accuracy of the pressure sensor was 0.06 Pa. 

where 

δ = air permeability (kg/m.Pa.s) 

j = Air flow rate across an area A (kg/s) 

L = Thickness of specimen (m) 

A=Area of the specimen (m2) 

ΔP = Difference in air pressure across the specimen surfaces (Pa) 
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Figure 4.10 Measured air permeability of the carpet specimen 

Compared to the permeability of OSB 9.6×10-10, spruce 5.00×10-11 and gypsum board 

4.16×10-9 kg/mPas, the permeability of the tested carpet was 1.05×10-5 kg/mPas, so carpet is 

10937 times as permeable as OSB board and 2524 times as permeable as gypsum board. 

4.3.3.2 Calculation procedure of effective diffusion coefficient of formaldehyde in carpet 

Assuming a constant pressure difference at the steady state period, the air flux, associated 

convective formaldehyde flux, and total formaldehyde flux can be calculated as follows: 

Convective formaldehyde flux: 

Bout
air

convection C
L

APj
ρ

δ
.

..∆
=                                                                                                   (4.5) 

where δ is the permeability of the carpet in kg/msPa; ΔP is the pressure drop between chamber 

A and chamber B in Pa; ρair is the air density at the test temperature in kg/m3, which is 1.192 

kg/m3 at 23 °C. L is the thickness of the material in m. A is the material area exposed to the air in 

m2. CBout is the formaldehyde concentration in the outflow of chamber B in kg/m3.jconvection is the 

formaldehyde mass flux due to convection in kg/s. 

Total formaldehyde flux from chamber A to chamber B: 

BBouttotal QCj =                                                                                                                  (4.6) 
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where QB is the flow rate into chamber B in m3/s.jtotal is formaldehyde mass flux due to both 

convection and diffusion in kg/s. 

Hence the flux due to diffusion can be calculated as: 

convectiontotaldiffusion jjj −=                                                                                                   (4.7) 

where jdiffusion is formaldehyde mass flux due to diffusion in kg/s. The above calculations provide 

an estimation of the effective diffusion coefficients based on the estimated pressure difference 

measured at the steady state period of the test. The partition coefficient can be calculated in the 

same way as for the other materials. In order to control and monitor the pressure difference 

across the test specimen for highly permeable materials such as the carpet, a more sensitive 

pressure sensor was purchased and installed together with an online monitoring data acquisition 

system.  

4.3.3.3 Test results of carpet 

Three tests were conducted for the carpet (20%, 50% and 70% RH). The test conditions and 

results are summarized in Table 4.7, 4.8 and 4.9. Figure 4.11 provides a comparison of effective 

diffusion coefficients and partition coefficients of carpet at different RHs. The measured pressure 

drop was corrected by subtracting the average of the noise signal (system error) from direct 

reading of the sensor in the test. The noise reading of the pressure sensor at 70%RH was 

relatively larger than the noises at 20%RH and 50%RH.  

Table 4.8  Summary of recorded environmental conditions in carpet tests 

Specimen Designate
d RH (%) 

Noise of 
pressure 
sensor 
before 
testing(Pa) 

Direct 
reading of 
pressure 
sensor in 
the test(Pa) 

Measured 
Pressure 
Drop(Pa) 

Measured 
Temperatur
e(°C) 

Measured 
RHA 

(%) 

Measured 
RHB 

(%) 

“Green” 
carpet 

20 -0.08 -0.27 -0.20±0.26 23.5±0.8 21.9±0.2 21.7±0.2 
50 -0.05 -0.27 -0.22±0.25 24.1±0.6 51.6±0.3 51.0±0.3 
70 0.22 -0.19 -0.41±0.24 23.9±0.3 70.0±1.0 68.9±1.1 
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Table 4.9  Summary of calculated mass fluxes in carpet tests 

Specimen Designated 
RH (%) 

Total mass flux 
(µg/s) 

Mass flux due to 
convection*(µg/s) 

Mass flux due to 
diffusion(µg/s) 

“Green” 
carpet 

20 1.31×10-8 -1.78×10-8 3.09×10-8 
50 1.25×10-8 -1.85×10-8 3.10×10-8 
70 1.29×10-8 -3.65×10-8 4.94×10-8 

• Negative sign means that the flux is from chamber B to chamber A. 
 

Table 4.10  Summary of test results of carpet tests 

No Materials  RH 
condition 
(%) 

CAin 
(μg/m3) 

CAout 
(μg/m3) 

CBout 
(μg/m3) 

De 
(m2/s) 

Kma 

25 “Green” carpet 20 3346.71  1825.11  1530.71  1.56×10-5 471 
26 50 3294.84  1721.42  1451.83  1.71×10-5 661 
27 70 3388.96  1790.57  1491.51  2.46×10-5 967 

 
 
Figure 4.11 Comparison of effective diffusion and partition coefficient of carpet at different RHs 
 

The calculated effective diffusion coefficients at different RHs were very close to the 

diffusion coefficient of formaldehyde in dry air (Dair) at 23 ºC(1.49×10-5m2/s), which indicates 

that the carpet had little resistance to formaldehyde diffusion. The diffusion coefficient of 

formaldehyde in dry air at a specific temperature and pressure was obtained by the Eq. (4.8): 

Pvv
mm

T
D

BA

BA
air 23/13/1

3

)(

110043.0

+

+
=                                                                                         (4.8) 

where Dair was the diffusion coefficient of formaldehyde in m2/s; mA was the molecular weight of 

dry air in g/mol; mB was the molecular weight of formaldehyde in g/mol; vA was the molecular 

volume of dry air in mL/gmol; vB was the molecular volume of formaldehyde in mL/gmol; T was 

the temperature in Kelvin; and P was the pressure in atm. A method to calculate the diffusion 
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coefficient of formaldehyde in humid air was not found in literature. If the diffusion coefficient 

was estimated by replacing the parameters of air in the equation by the parameters of the mixture 

of air and water vapor, in the presence of water vapor, the molecular weight of the mixture of air 

and water vapor was smaller than air since the molecular weight of water vapor (18.0 g/mol) was 

smaller than air (28.9 g/mol). The molecular volume of water vapor could be obtained by 

dividing the molecular weight by the density. The density of water vapor was slightly smaller than 

air at the same temperature. The molecular volume of water vapor was still smaller than air. As a 

result, the diffusion coefficient of formaldehyde predicted in humid air in this way was larger than 

the diffusion coefficient in air only, which agrees with the trend of the measured results despite 

the blockage of the carpet material matrix. More quantitative analysis will be needed in future 

studies. 

Relative humidity in the range 20% RH ~70% RH led to a slightly larger effective diffusion 

coefficient of formaldehyde in the carpet. The partition coefficient of formaldehyde in carpet 

increased slightly with the increase of relative humidity, probably also due to the soluble nature of 

formaldehyde, which was absorbed more into the adsorbed moisture at a higher relative humidity. 

4.4 Conclusion 

     A dynamic dual chamber system was used to investigate the repeatability of tests and 

effects of relative humidity, mixture, and physicochemical properties of VOCs on the effective 

diffusion coefficient and partition coefficient of VOCs in porous mediums (calcium silicate, 

conventional gypsum wallboard, “green” gypsum wallboard and “green” carpet). Tests at 25%, 

50% and 80%RH were conducted for calcium silicate, while 20%, 50%, and 70%RH were 

conducted for the other three materials. The following conclusions can be made for calcium 

silicate: 

1. The partition coefficient of formaldehyde (a water soluble compound) in calcium silicate 

did not change when humidity increased from 25%RH to 50%RH, but it increased by 56% when 
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humidity increased from 50%RH to 80%RH. The increase of the partition coefficient of 

formaldehyde was likely because the formaldehyde molecule is absorbed into the significantly 

more adsorbed water under the 80%RH condition. The partition coefficient of toluene (a water 

non-soluble compound) decreased slightly with increasing humidity conditions from 25%RH to 

80%RH. This was possibly because of competition by water vapor molecules for available 

adsorption site with toluene molecules. 

2. The humidity effect on the diffusion coefficient of formaldehyde and toluene in calcium 

silicate was not significant in the hygroscopic range from 25%RH to 80%RH, where blocking of 

diffusion paths due to capillary condensation is minimal. 

3. In the test of a mixture of formaldehyde and toluene for calcium silicate, the effective 

diffusion coefficient of formaldehyde was smaller and the partition coefficient of formaldehyde 

was larger than in single compound tests. It is not clear what could have caused such a 

phenomenon and further investigation is needed. Both the effective diffusion and the partition 

coefficient of toluene did not differ significantly in a mixture test compared to the toluene only 

test. 

4. Besides vapor pressure, the solubility of VOCs was also one factor that influenced the 

partition coefficient of the VOC. The partition coefficient of VOCs was not simply inversely 

proportional to the vapor pressure of the compound, but also increased with higher Henry’s law 

constants. At a relatively high relative humidity where moisture content is significant in the 

material, the partition coefficient of a water-soluble compound such as formaldehyde depends on 

the Henry’s law constant as well as vapor pressure. Further study is needed to establish the 

relationship between them. 

The following conclusions can be made for conventional gypsum wallboard, “green” gypsum 

wallboard and “green” carpet: 
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5. The test method had good repeatability as verified by duplicate tests for conventional 

wallboard at 50% RH.  

6. A higher relative humidity led to a larger effective diffusion coefficient for both 

conventional wallboard and green wallboard.  

7. The partition coefficient of formaldehyde in conventional wallboard became larger from 

20% RH to 50% RH, while the relative humidity effect was insignificant from 50% RH to 

70% RH considering that the decrease was less than 3 times the experimental uncertainty. 

8. The partition coefficient of formaldehyde in green wallboard and carpet increased slightly 

with the increase of relative humidity, probably due to the soluble nature of formaldehyde, 

which was absorbed more into the adsorbed moisture at a higher relative humidity. 

9. The effective diffusion coefficient and partition coefficient of green wallboard at each 

level of relative humidity were significantly larger than those for conventional wallboard. The 

slightly lower temperature in the “green” wall board than in the conventional wall board tests 

(21 vs. 23 °C) contributed, but may or may not be responsible for all of the difference, which 

requires further investigation.  

10. The carpet specimen was highly permeable and the measured diffusion coefficients at 

20% RH, 50% RH and 70% RH were all at the similar level as the formaldehyde diffusion 

coefficient in dry air at 23 ºC, and had insignificant difference among the different RH 

conditions. The partition coefficient, however, increased slightly with the increase of RH level. 
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Chapter 5 Modeling Emissions from a Multi-layer Furniture Material 

Assembly 

5.1 Introduction       

Many wood-based furniture is made of composite wood boards such as the work panel and 

table surface. VOCs are emitted from different layers of the multilayer assembly, not only from 

the top surface, but also from the core and bottom layer. It is important to understand the 

emission characteristics of common multilayer-structured materials in order to provide useful 

information for manufacturing process control and to finally reduce the VOCs released into the 

indoor air. This chapter discusses the method and application of modeling emissions from a 

multilayer furniture assembly with a specific focus on the emissions from wood-based office 

furniture.  

5.2 Description of the Material Assembly 

5.2.1 Composition and structure 

The selected subject of interest in this dissertation is a wood assembly worksurface (Fig. 

5.1(a), (b)) that consists of a painted veneer on the top, a particleboard core, and an unpainted 

veneer at the bottom. Particular paints or varnishes are applied to the top surface of the veneer 

(called painted veneer, Fig. 5.1(d)) to have more gloss and protect the worksurface from damage. 

Veneer layers (Fig. 5.1(e)) are very thin compared to particleboard layers, and they are usually 

glued and pressed onto core material. Particleboard (Fig. 5.1(c)) is a wood panel product made 

from wood particles, widely used in the manufacture of furniture, floor underlayment, shelving, 

cabinet, table tennis, kitchen worktops, and work surfaces in offices and domestic homes. The 

basic physical parameters are provided in Table 5.1. 
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Figure 5.1 Photograph of (a) Worksurface top (b) Worksurface bottom (c) Particleboard core (d) 

Painted veneer (e) Veneer 

 

Table 5.1 Basic physical parameters of each layer in the worksurface assembly studied 

Material Length 
(mm) 

Width 
(mm) 

Thickness 
(mm) 

Density* 
(kg/m3) 

Location in 
assembly 

Painted veneer 177.8 177.8 0.55 717.86 Top layer 
Particleboard 177.8 177.8 28.62 749.86 Core layer 
Veneer 177.8 177.8 0.55 643.65 Bottom layer 
* The densities of the materials were calculated from the mass measured by a balance divided by 

specimen volume. 

5.2.2 Manufacturing processes and emission characteristics of individual materials 

Particleboard: The process of making particle board begins with wood. Most particle board 

manufacturers use waste wood products collected from commercial woodworking factories, 

although some virgin wood may be used as well. All of this recycled wood fiber and sawdust is 

stored in large containers before being processed into particle board. 

a b c 

d e 
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The wood particles are usually dried, then sorted to eliminate overly large or small pieces. 

Once this mechanical sorting has been completed, the acceptable wood fibers are moved by 

conveyor belt to a blending hopper. Along the way, several overhead nozzles spray the wood 

fibers with a strong liquid resin or glue. Several different forms of formaldehyde-based resins may 

be used, depending on the specific quality of particle board desired. The resin or glue applied is 

the major VOCS source for particleboard. The distribution of theses VOCs are determined by 

the manufacturing process. Another VOC source is the VOC that originates from wood itself, so 

the distribution of these VOCs is more dependent on the species of the wood. 

The resin-soaked wood particles are then blended to form a consistent paste. This 

combination is piped into a forming machine, which presses out a sheet of uncured particle board. 

The formed panels of particle board are then pressed down for easier transportation to the final 

curing ovens. Individual sheets of particle board are held under pressure as the air around them is 

superheated. This allows the resin to harden and form a very strong bond with the wood fibers. 

Some forms of particle board are left in this rough state for use in flooring and other projects 

in which the panels will not be visible. In situations in which the appearance of the product is a 

concern, thin strips of wood, called veneers, are added to the surface of the particle board. 

Furniture manufacturers often use veneer-covered particle board as a cheaper alternative to 

natural hardwoods. Many assemble-it-yourself desks and other home furnishings may also be 

made from veneered particle board. 

Wood veneer: Wood veneer is used to give furniture or other materials a fine wood grain 

appearance. Wood veneer comes in very thin sheets, less than 3 mm thick, and is made of various 

species of finished or unfinished wood. 

Wood veneer can be made from the wood of various species of trees. It is often made from 

species such as cherry, oak, maple and birch, as well as rare and exotic species such as Brazilian 

rosewood and eucalyptus. There are hundreds of different types of wood veneer available. When 

http://www.wisegeek.com/what-are-conveyor-belts.htm
http://www.wisegeek.com/what-is-formaldehyde.htm
http://www.wisegeek.com/how-is-particle-board-made.htm##
http://www.wisegeek.com/what-is-rosewood.htm
http://www.wisegeek.com/what-is-eucalyptus.htm
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wood veneer is applied properly, it gives a piece the illusion that is made entirely from the same 

type of wood as the veneer.  

Three typical procedures are needed to make wood veneer 1) Preparing: Logs must be 

prepared before they can be turned into wood veneer. After they are delivered, logs are washed 

and then run through a machine that removes the bark. After the bark has been removed, the log 

is sent through a machine that slices it in half lengthwise. 2) Slicing and drying: The cut log pieces 

are loaded into a saw that cuts them into very thin slices, sometimes as thin as 1/40th of an inch 

thick. The slices are then placed into a dryer, where all the moisture is removed from them. After 

the slices are dried, they are trimmed so that the edges are perfectly straight and will fit together 

smoothly. 3) Sheeting: After the slices are cut, workers sort and grade them. The small, graded 

slices are joined together to make larger sheets of various sizes depending upon their needs. The 

large sheets are then turned into either raw veneer or paper-backed veneer. To make raw veneer, 

the large sheets are simply sanded. To make paper-backed veneer, paper is applied to the back of 

the sheets. The sheets are then trimmed again to even out the paper backing and sanded to a 

smooth finish.  

Wood veneer is applied with an adhesive such as carpenter’s glue, using a specialized roller 

and clamps to hold the veneer in place while drying. The choice of adhesive should depend on 

the experience of the person applying the wood veneer, since some adhesives are so strong that 

they do not allow for any mistakes. Wood veneer should also be applied only to flat surfaces, 

because it doesn’t adhere neatly to curves. 

VOCs sources for veneer also depend on both the adhesives used and the species of wood 

used as the raw material. 

Painted veneer:  The procedures to paint the veneer are: 1) Fix any problems with the veneer - 

use wood glue to affix veneer back to the original surface. Unfortunately cracked or missing 

pieces of veneer cannot be fixed. You will need to remove the damaged piece and glue a new 

http://www.ehow.com/how-does_4967320_how-wood-veneer-made.html##
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piece in its place. 2) Clean the surface with hot water removing any grease or grime. A simple 

solution containing a few drops of dish soap should work, do not saturate the surface. Please 

note that if the veneer is cracked, peeling or missing you should hold off on cleaning and fix this 

problem first as veneer is usually covering particle board (MDF) which breaks down when wet. 3) 

After dry, lightly sand the veneer (do not sand through veneer) and use tack cloth to remove all 

of the dust created on the surface. You may also want to clean up any dust around the surface to 

be painted or you have the potential to have the dust blow into your fresh paint. 4) Apply primer 

- Kilz is great. - At least 2 coats. Allow to dry for 24 hours. - You may need to sand between 

coats of primer (depends on smoothness of surface desired) 5) Apply paint - 2 coats for light 

paint, generally more for darker colors. 6) Seal with 2-4 coats of varnish if the surface is going to 

be used as a work surface. The paint used in the manufacturing is a major VOC source, which 

mainly rests on the surface of the veneer, and some of the paint may diffuse into the inside of the 

veneer to some extent. It needs further research to quantify the depth that the paint can reach. 

Same as particleboard and veneer, wood itself is another VOCs source, and the VOCs due to 

wood distribute within all the wood material. 

About the specific VOCs emitted from the three layered worksurface studies in this 

dissertation, small chamber tests were done for painted veneer, veneer and particleboard, 

respectively. The details related to these tests can be found in Appendix D. 

5.2.3  Applications in office furniture 

Veneering is widely used on fine furniture for decorative and architectural purposes; hence 

the multilayer layered panels make up the edges, partition, cabinet, drawer and so on in the office 

furniture. In a typical workstation system, some panel comprises the particleboard drawer sides 

that are wrapped with a vinyl material.  The worksurface, the panels, the drawer fronts, and the 

internal supports for the file cabinets usually have a standard industrial particleboard core with 

urea-formaldehyde (UF) resin. The veneers are applied with UF adhesive. That is to say, most of 
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the components in the office furniture are multilayer structured instead of singe layered, although 

the thickness of the core and the exterior layer probably differ depending on the functions of the 

specific product. 

VOCs emission is a long process, which may take years to completely deplete the VOCs from 

the multilayer assembly. Though testing gives specific VOCs emitted from the materials, however, 

it is not realistic to measure all the VOCs concentration level during its entire service life. 

Simulation models can be useful for predicting VOCs exposure quickly with much less expense 

and time, and the model can also easily answer the relevant questions like estimated VOCs 

exposure time, VOCs distribution after a certain amount of time. Based on these needs, model 

development for multilayer assembly becomes inevitable.    

5.3  Multilayer model development 

Consider a generic multilayer assembly inside a chamber as illustrated in Fig. 5.2. The 

chamber has a flow rate of Qin at the inlet and Qout at the outlet, and a fan is placed in the 

chamber to make sure the chamber air is well mixed. With zero leakage in chamber, we have 

Qin=Qout. The geometry is symmetrical in the x direction. The material width is 2w in the x 

direction. In y direction, the subject material is composed of n layers of different materials which 

are labeled 1, 2, …i-1, i, i+1, … n from bottom to top, and each material has a corresponding 

thickness of Li. The side edges and bottom surface of the material specimen are completely sealed 

up by the tape in the VOCs emission tests. The purpose of the sealing is to prevent the VOCs 

leakage from the sides so that the transport only occurs in the y direction. Note that in a typical 

test, a small area right close to the border on the top surface is also sealed in both moisture and 

VOCs emission test in specimen treatment, but its effect on VOC transport is neglected due to 

its small area in comparison to the total exposed emission surface area.  
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Figure 5.2 Schematic of 1D multilayer model 

 
5.3.1 Physics and assumptions 

In the manufacturing process of painted veneer, finish is applied to the surface of the veneer 

and later slowly diffuses into the inside of the veneer, which combines into the painted veneer. 

Although finish and veneer are made of different materials, in the modeling, they are treated 

together as a new material named painted veneer in the following part. Particleboard is also 

assumed to be homogeneous although density difference was observed due to the press in the 

manufacturing process (Zhao et al. 2009), which makes the density of exterior part slightly larger 

than the interior part. It is also assumed that there are perfect contact between painted veneer and 

particleboard, and between particleboard and veneer so that equilibrium condition exists at the 

interfaces governed by the partition law (Zhang et al. 1999).   

5.3.2 Governing equations 

In a numerical model approach, porous building materials that contain moisture and VOC(s) 

can be divided into a number of control volumes. Within a control volume ( REVV ), the material 

consists of material matrix (adsorbent), macro and/or micro pores filled with gas phase mixture 

and/or liquid phase mixture. The gas phase consist of dry air, water vapor and/or gas phase 

VOC(s), while the liquid phase may consist of liquid water (including adsorbed phase water 

molecules), and/or adsorbed phase VOC(s). The equilibrium between liquid water and water vapor 
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can be described by sorption isotherm or moisture retention curve. The equilibrium between 

adsorbed phase VOC and the gas phase VOC can be described by VOC adsorption isotherm (e.g., 

a partition coefficient in its simplest form).  

In the development of current multilayer model, several assumptions are adopted for the VOC 

mass balance: 

• There are no interactions between different VOCs and hence each VOC component can 

be modeled independent of the others in the gas phase and in the adsorbed phase; 

• No VOC dissolution in the water, if capillary water condensation takes place; VOC 

adsorption and release is rather an interaction between the adsorbed phase on solid matrix 

and the gas phase;  

• Thermodynamic equilibrium (temperature, chemical potential) exists between VOC in the 

gas phase and the adsorbed phase;  

• The total VOC flux consists of a convective and a diffusive part in general, but for the 

assembly system studied, the convection component can be neglected due to low air 

permeability of the materials; the diffusion part includes molecular diffusion and Knudsen 

diffusion through pore air. 

With the assumptions above, the VOC mass balance can be written as  

[ ] glvocgvocglvocc m
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m
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m
REV j
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∂
∂
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VOC (liquid+vapor) density in reference volume kg/m

VOC sources/sinks in reference volume kg/m s  

The diffusive VOC flux in equation (5.1) can be calculated as follows ( in the same way as water 

vapor diffusion flux calculation in Building Physics: 
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vocD 2                    VOC diffusivity in free air                                                     m /s  

vocµ −                    VOC diffusion resistance factor                        

- /g por lθ θ θ= 3 3       Volume fraction of the gas phase                                           m m  

/porθ 3 3                     Porosity of material                                                               m m  

/lθ
3 3                        Volume fraction of the liquid phase                                       m m  

vocp                      Partial pressure of VOC in gas phase                                     Pa  

The diffusion coefficient in free air is a known thermodynamic property of the VOC. The 

diffusion resistance factor is attributed to the combined effect of both porosity and tortuosity. 

The VOC-diffusion resistance factor depends on both the material and the VOC, and has to be 

determined experimentally. Using the analogy between VOC and water vapor diffusion in porous 

media, the resistance factor for VOC can be determined as the product of a similarity coefficient, 

kvoc and the resistance factor for water vapor.  

5.3.3    Boundary conditions 

5.3.3.1 Boundary conditions between interior material layers (from layer 2 to layer n-1) 

It is known that for each VOC-material combinations, there is a partition coefficient.  

Similarly, for each material-material combination, the VOC density in each material will be 

obtained by another partition coefficient between each layer ii
mmK ,1− . ii

mmK ,1−  is the ratio of maK  in 

VOC-material to another VOC-material.  

i
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i
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VOCs diffusion in porous media includes molecular diffusion and Knudsen diffusion. Within 

the material, partition coefficient ii
maK ,1− correlates the VOCs concentration between the material i-

1 and i. The governing equations for VOCs in any layer i read: 

ii
mm

mi
gmi

g K

voc

voc
,1

,
,1

−
− =

ρ
ρ            (5.3) 

5.3.3.2 Boundary conditions for layer 1 and n 

For layer 1, there is no mass flux of VOCs through the wall of the chamber if the bottom of 

the material is sealed against the chamber wall: 

0
,1

=
∂

∂

x

vocm
gρ                                                                                                                         (5.4) 

However, if the bottom surface is also exposed to the chamber air, the boundary condition 

will be the same as layer n. 

For layer n, the VOCs concentration in layer n is governed by linear Langmuir isotherm: 

CK n
ma

mn
g

voc =,ρ                                                                                                                    (5.5) 

Where, C is the VOCs concentration in the chamber air in kg/m3. This assumes that the mass 

transfer resistance over the material surface is negligible and the equilibrium is reached 

instantaneously. 

5.3.4    VOC mass balance in the chamber 

As illustrated in Fig. 5.2, for the VOCs concentration in the chamber, it complies with the 

following mass balance equations: 
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Where, C is the VOCs concentration in the chamber air in kg/m3; V is the chamber volume 

in m3; Qin and Qout are the flow rates into and out of the chamber in m3/s; Cin is the VOCs 

concentration in the inlet in kg/m3, which is zero in this paper; Cout is the VOCs concentration in 

the outlet in kg/m3; Dm,1 is the diffusion coefficient of VOC in the layer 1 in m2/s. 

It is assumed that the boundary layer is negligible in the painted veneer and chamber air, 

which indicates that the convective mass transfer resistance in the boundary layer is insignificant 

compared to diffusion resistance inside the multilayer material.  

5.3.5    Initial conditions 

Initial conditions:                                                                                                                   

0,
i

mi
g Fvoc =ρ                                                                                                                          (5.7) 

Where, vocmi
g
,ρ is the initial VOCs concentration in layer i in kg/m3; 0

iF is the function of 

VOCs concentration distribution in layer i. 

5.3.6    Model implementation 

The above model has been implemented in the CHAMPS-BES software (Grunewald et al. 

2007). More details can be found in the CHAMPS-BES help file.  

5.4 Parametric analysis for kvoc, Kma and C0 of each layer 

The objectives of parametric analysis were to 1) study the influence of each parameter (kvoc, 

C0, Kma) of VOC in the studied layer on the entire emission rate of VOC from the whole 

worksurface 2) determine the most important input parameters needed for the multilayer model 

for the assembly case under study.  

Fig. 5.3 is a schematic of a typical multilayered worksurface which is composed of painted 

veneer (including a thin finish layer and veneer), particleboard and veneer sequentially from top 

to bottom.  
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Figure 5.3 Schematic of multilayered typical worksurface 

To study the influence of three parameters (similarity coefficient kvoc, partition coefficient Kma 

and initial concentration C0) on the emission rate of the entire worksurface, changes of only one 

studied parameter were made while the other two parameters were kept unchanged. Acetaldehyde 

was chosen in all the parametric studies because it is a major emitted VOC from all three layers. 

5.4.1 Parametric study for painted veneer 

Table 5.2 summarizes all the values for three sets of parametric studies. Fig. 5.4 presents the 

parametric results for painted veneer, while the reference values are used for particleboard and 

the unpainted veneer as given in Table 5.4. The reference values were chosen based on previous 

experience and experimental results on similarity coefficient, emission test results on initial 

concentration, diffusion and partition coefficients measurements ((Xu et al. 2009, Smith et al. 

2009, Bodalal et al. 2000, An et al. 1999 ). These reference values are somewhat arbitrary, but are 

considered to be adequate for parametric analysis. 
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Table 5.2 Input parameters for three layers in parametric study for painted veneer 

Material Parameters 
studied 

Initial 
concentration 
C0 (g/m3) 

Similarity coefficient 
kvoc 

Partition coefficient 
Kma 

Painted 
Veneer 

kvoc 0* 0.10,0.26, 0.52,1.00 1000* 
Kma 0* 0.518* 100,1000,5000,10000 
C0 0,10,25,50 0.518* 1000* 

Particleboard 17.61* 0.518* 4325* 
Veneer 0* 0.518* 1000* 
* used as reference value when other parameters are varied. 
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Figure 5.4 Parametric study of three critical parameters of painted veneer on the emission rate of 

the multilayered worksurface 

For similarity coefficient, four values of each parameter were studied: 0.10, 0.26, 0.52, 1.00. 

The selection of the similarity coefficient was based on the findings of previous study in Chapter 

3. The possible values for similarity coefficient by the experiment data were in the range of 0.1-

(a) Similarity coefficient (b) Partition coefficient 

(c) Initial concentration 
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0.6. The extreme case of 1.0 was also studied when the diffusion resistances for VOC and water 

vapor were equal. As discussed in Chapter 3, the relationship between apparent diffusion 

coefficient and similarity coefficient is: 

mavaporvoc

air

ma

e

Kk
D

K
DD

µ
==                                                                                                    (5.8) 

That is, the apparent diffusion coefficient is inversely proportional to the similarity coefficient. 

Figure 5.7a shows that the similarity coefficient is the most important parameter of painted 

veneer in determining the emission rate of acetaldehyde from worksurface assembly. Considering 

the relationship of similarity coefficient and diffusion coefficient, we can conclude that the 

emission rate of acetaldehyde increases significantly with respect to the increase of diffusion 

coefficient. So, the change of the diffusion coefficient of the top painted veneer can control the 

emission rate from the whole worksurface. The top material with smaller diffusion coefficient can 

prevent VOCs emission from the material below it.  

For partition coefficients, the five values in the parametric study were: 100, 1000, 5000, and 

10000. The selection of the range of partition coefficient was based on the published literature by 

other researchers (Bodalal et al. 2000, Cox et al. 2001) and measured values in chapter 3 and 4. 

Fig. 5.4b shows that: 1) There is no observable change of acetaldehyde concentration in the 

chamber when the partition coefficient of acetaldehyde ranges from 10 to 5000; 2) The peak 

concentration slightly decreases at the first 2 to 3 days when the partition coefficient increases 

from 5000 to 10000; 3) There is no observable change of long-term chamber concentration when 

the partition coefficient of acetaldehyde changes in the studied range; 4) Partition coefficient of 

acetaldehyde in painted veneer has very small effect on the whole emission rate of acetaldehyde 

from the worksurface.  

The main reason of this phenomenon is the small thickness of painted veneer relative to that 

of the core particleboard. The thickness of the painted veneer is only 0.55 mm, and 
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correspondingly the volume of the painted veneer and veneer are only 1.92% of the volume of 

particleboard.  The storage for VOCs in small volume of the painted veneer (and veneer, see the 

parametric study for veneer in the later section) is negligible compared to the large storage 

capacity of particleboard. So, the value of partition coefficients in painted veneer (and veneer) is 

not the dominant factor that determines the emission rate of the VOCs from the three layered 

assembly.  

For initial concentrations, the studied values were: 0, 10, 25 and 50, respectively. The range of 

the initial concentration was determined within the same order of magnitude including the 

extreme case when there was zero VOC content in the material. The simulation result shows that: 

the peak concentration for each case increased with the initial concentration in the material; after 

2 days, there was no significant change for the acetaldehyde concentration in the chamber with 

respect to the increase of initial concentration in the painted veneer in the first 300 days. 

By the comparison of the three parametric studies, we can see that the similarity coefficient is 

the most important parameter for painted veneer in simulating the concentration of the 

worksurface assembly in the chamber. For partition coefficient and initial concentration, their 

effects are minor.  Therefore, in order to obtain accurate simulation results for the assembly, is it 

important to obtain accurate estimation of the similarity coefficient, while the values for the 

partition coefficient and initial concentration can be set somewhat loosely---e.g., using the 

estimated reference values would be adequate. 

5.4.2 Parametric study for particleboard 

Table 5.3 summarizes all the values for three sets of parametric studies. Fig. 5.5 presents the 

parametric results for particleboard. 
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Table 5.3 Input parameters for three layers in parametric study for particleboard 

Material Parameters 
studied 

Initial 
concentration 
(g/m3) C0 

Similarity coefficient 
kvoc 

Partition coefficient 
Kma 

PB 
kvoc 17.61* 0.10,0.26, 0.52,1.00 4325* 
Kma 17.61* 0.518* 100,1000,5000,10000 
C0 10,25,50 0.518* 4325* 

PV 0* 0.518* 1000* 
Veneer 0* 0.518* 1000* 

* used as reference value when other parameters are varied. 
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Figure 5.5 Parametric study of three critical parameters of particleboard on the emission rate of 

the multilayered worksurface 

Same procedures of parametric studies were conducted for particleboard. Based on the 

simulation results of parametric study of similarity coefficient, the following findings are drawn: 1) 

higher diffusion coefficient leads to higher acetaldehyde concentration in the chamber in the first 

280 days, but the trend reverses after 280 days. 2) Higher diffusion coefficient also depletes the 

(a) Similarity coefficient (b) Partition coefficient 

(c) Initial concentration 
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acetaldehyde mass in the material faster than the smaller diffusion coefficient does. Therefore, the 

effect of diffusion coefficient on the acetaldehyde concentration is different in the entire emission 

period of the worksurface.  

Based on the parametric study for the partition coefficient, it is seen that 1) Smaller partition 

coefficient of acetaldehyde in particleboard leads to a relatively large peak acetaldehyde 

concentration. 2) Smaller partition coefficient also depletes the acetaldehyde mass in the material 

faster than big partition coefficient. 

For the parametric study of initial concentration, it is seen very clearly that the initial 

concentration plays a big role in determining the acetaldehyde concentration from the 

worksurface.  

In summary, we can see that all three parameters of particleboard are very important in 

determining the acetaldehyde concentration in the chamber for the worksurface assembly. It can 

be concluded that for the core layer of the multilayer materials, all three input parameters are very 

important when using this developed multilayered model.  

5.4.3 Parametric study for veneer 

Table 5.4 summarizes all the values for three sets of parametric studies. Fig. 5.6 presents the 

parametric results for particleboard. 

Table 5.4 Input parameters for three layers in parametric study for veneer 

Material Parameters 
studied 

Initial 
concentration 
(g/m3) 

Similarity coefficient 
 

Partition coefficient 

Veneer 
kvoc 0* 0.10,0.26, 0.52,1.00 1000* 
Kma 0* 0.518* 100,1000,5000,10000 
C0 0,10,25,50 0.518* 1000* 

PB 17.61* 0.518* 4325* 
PV 0* 0.518* 1000* 

* used as reference value when other parameters are varied. 
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Figure 5.6 Parametric study of three critical parameters of veneer on the emission rate of the 

multilayered worksurface 

Same parametric studies were also conducted for veneer. It can be seen from the simulation 

results that 1) No obvious concentration change has been observed for the diffusion coefficient 

and partition coefficient in the studied ranges. 2) There is no pronounced increase of 

acetaldehyde concentration in the chamber with the increase of initial concentration.  

5.5 Determination of model parameters 

Obviously, in order to make a successful simulation using the multilayered model developed, 

three critical parameters need to be input: similarity coefficient, partition coefficient and initial 

VOC concentration. Two important VOCs are selected in the following studies including 

sections of model verification and model application: acetaldehyde and hexanal. The diffusion 

coefficients of the VOCs are from the similarity coefficients obtained. The partition coefficients 

and initial emittable VOCs concentrations of acetaldehyde and hexanal in particleboard are 

(a) Similarity coefficient (b) Partition coefficient 

(c) Initial concentration 
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determined experimentally by VOC extraction method (referred to chapter 3). Based on the 

findings of parametric study, the partition coefficients of VOCs in painted veneer and veneer are 

negligible, so one general value 1000 is adopted as the input for the multilayer model. There is no 

acetaldehyde in painted veneer and veneer, so the initial acetaldehyde concentration is zero. 

Hexanal concentrations in painted veneer and veneer are very minor, so the initial concentration 

can also be treated as zero. Table 5.5 lists all the final values for each parameter in every layer 

used in the model.  

Table 5.5 Critical coefficients used in modeling for worksurface 

Material Compound Initial 
concentration 
(g/m3) 

Similarity 
coefficient 
 

Partition 
coefficient 

Painted 
veneer 

Acetaldehyde 0 0.518 1000a 
Hexanal 0 0.518 1000a 

Particleboard Acetaldehyde 17.61 0.518 4325 
Hexanal 40.18 0.518 4419 

Unfinished 
Veneer 

Acetaldehyde 0 0.518 1000a 
Hexanal 0 0.518 1000a 

Note a: the value is assumed based on the parametric study 

5.6 Model verification 

For a three-layer work surface assembly, limited data were collected. A standard emission test 

was performed for work surface panel consisting of painted veneer, particleboard and veneer 

using a 50 L chamber ventilated at 1 ACH. The specimen has a dimension of 7.5”x7.5” and 

thickness of 30 mm. Experiment details are presented in appendix D. The tests were conducted 

at constant temperature 23°C and 50%RH. The ventilation rates were 1 ACH. Acetaldehyde and 

hexanal were chosen in the comparison with the simulation results because they were important 

compounds emitted from the worksurface. 
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Simulations for the same tested scenarios were conducted. The simulated material is three 

layered worksurface, with the same exposed area as in the tests. The selected VOCs are still 

acetaldehyde and hexanal, which are two major emitted VOCs from the worksurface. 

Table 5.6 Parameters of acetaldehyde in worksurface before considering redistribution effect 

Material Initial concentration 
(g/m3) 

Similarity coefficient 
 

Partition coefficient 

PV 0 0.518 1000a 
PB 17.61 0.518 4325 
Veneer 0 0.518 1000a 

 

Table 5.7 Parameters of hexanal in worksurface before considering redistribution effect 

Material Initial concentration 
(g/m3) 

Similarity coefficient 
 

Partition coefficient 

PV 0a 0.518 1000a 
PB 40.18 0.518 4419 
Veneer 0a 0.518 1000a 
a means that the value is assumed. 

For the tested materials, before testing, the materials were stored in the storage room under 

23°C constant temperature. The stored materials were subject to redistribution effect (Hui et al. 

2007), and the VOCs concentrations in each layer reached an equilibrium between each other. 

The final concentrations in each layer and input parameters in CHAMPS are presented in the 

following tables: 

Table 5.8 Input parameters for the simulation of acetaldehyde in worksurface after considering 

redistribution effect 

Material Initial concentration 
(g/m3) 

Similarity coefficient 
 

Partition coefficient 

PV 4.05 0.518 1000a 
PB 17.5 0.518 4325 
Veneer 4.05 0.518 1000a 
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Table 5.9 Input parameters for simulation of hexanal in worksurface after considering 

redistribution effect 

Material Initial concentration 
(g/m3) 

Similarity coefficient 
 

Partition coefficient 

PV 7.3 0.518 1000a 
PB 39.8 0.518 4419 
Veneer 9.0 0.518 1000a 
a means that the value is assumed. 

Below is the comparison of simulation considering the redistribution effect (Hui et al. 2007) 

with the measured multilayer emission data of acetaldehyde and hexanal from three layered 

worksurface. 
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Figure 5.7 Comparison of simulation results with the experiment results 

It can be seen that the simulation results match the measured data points well, which proved 

that the multilayer model developed was able to simulate the emission from multilayered 

furniture or building materials in accuracy. However, the comparison also showed that the no 

sufficient data that covered the transient status for the VOCs concentrations were presented in 

the comparison with simulated results. Therefore, the measurement data for acetaldehyde in the 

first 2 days and for hexanal in the first day in the small chamber emission tests are needed in the 

future study.  
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5.7 Application of the multilayer model 

The developed multilayer model can be used to many real scenarios. The model can be used 

to study the emission characteristics of VOCs from any layer or all layers of the material, and it 

can also be used to study the effect of the top (or outer) layer in preventing the emission from the 

lower (or inner) layers. Several application cases are discussed in the following sections. 

5.7.1 The emission characteristics of acetaldehyde from three layers 

Acetaldehyde is chosen because it exists only in the particleboard, but it doesn’t exist in the 

veneer and painted veneer. This simulation studies the emission characteristics of acetaldehyde 

from the entire worksurface. It also studies how the acetaldehyde from particleboard diffuses in 

the three layers. The input parameters for the model are provided in Table 5.10. The simulation 

results are shown in Fig. 5.8. 

Table 5.10 Input parameters for the simulation of acetaldehyde in worksurface 

Material Initial concentration 
(g/m3) 

Similarity coefficient 
 

Partition coefficient 

PV 0 0.518 1000 
PB 17.61 0.518 4325 
Veneer 0 0.518 1000 
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Figure 5.8 Simulation of acetaldehyde from worksurface: a,b,c,d for mass fluxes, and e, f for 

average concentration in the materials. 

The acetaldehyde mass fluxes from veneer to particleboard, from particleboard to painted 

veneer and from painted veneer to chamber are plotted in the first graph of Fig. 5.10. We can see 

that the mass flux from painted veneer to chamber decreases with elapsed time in the entire 

emission period. The mass flux from particleboard to painted veneer increases with elapsed time 

in the first 20 days, and then decreased with elapsed time in the latter period. From fourth graph, 

we can see that the mass first diffuses from the particleboard to veneer, and then changes the 

direction in about 25 days. The reason is that: in the first 25 days, the acetaldehyde concentration 

in particleboard reached equilibrium with the acetaldehyde concentration in the veneer because of 
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zero initial concentration in the veneer, and then acetaldehyde in the veneer diffuses from veneer 

to particleboard.  

The fifth and sixth graph showed that the concentration in painted veneer and veneer 

increased from zero to peak value in about 1 day, and then decreased with elapsed time. 

5.7.2 Comaprison between multi-layer co-presence and single layer presence for hexanal 

In some cases, one VOC exists either in one layer, as discussed in section 5.8.1. For some 

VOC, it may also exist simultaneously in three layers. These two cases are also studied together in 

this part. In case one, hexanal only exists in the particleboard, and in case two, hexanal exists in 

all three layers. The input parameters for these two scenarios are provided in Table 5.11 and 5.12.  

The simulation results are shown in Fig. 5.9. 

Table 5.11 Simulation of hexanal in three layers- only particleboard has hexanal 

Material Initial concentration 
(g/m3) 

Similarity coefficient 
 

Partition coefficient 

PV 0a 0.518 1000a 
PB 40.18 0.518 4419 
Veneer 0a 0.518 1000a 
         

Table 5.12 Simulation of hexanal in three layers: all layers have hexanal 

Material Initial concentration 
(g/m3) 

Similarity coefficient 
 

Partition coefficient 

PV 40.18a 0.518 1000a 
PB 40.18 0.518 4419 
Veneer 40.18a 0.518 1000a 
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Figure 5.9 Simulation of hexanal in three layers and one layer 

 
The first and fourth graphs of Fig. 5.9 show that there is not too much difference for the 

chamber concentration or mass flux of hexanal in two cases, which is consistent with the findings 

of previous parametric study. The second graph of Fig. 5.9 shows that the mass flux of hexanal 

from veneer to particleboard decreases with elapsed time when hexanal exists in three layers, 

which is different from the case when hexanal only exists in particleboard. The third graph of Fig. 

5.9 shows that the mass flux from particleboard to painted veneer when hexanal exists in three 

layers (case 2) is higher than that when hexanal exists in only particleboard (case 1) during the 

first 20 days. It is because there is more hexanal in veneer and particleboard in case 2 than that in 

case 1. 

5.7.3 Effect of painted veneer in reducing the emission rate from the worksurface 

To study of the effect of painted veneer, two simulations were run. The first one is the 

emission test of acetaldehyde only in the particleboard. The second case is the emission of 

acetaldehyde from the whole worksurface. The input parameters are summarized in Table 5.13. 

The simulation results are presented in Fig. 5.10. 
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Table 5.13 Input parameters in the models to study the effect of painted veneer 

Pure particleboard 
Material Initial concentration 

(g/m3) 
Similarity coefficient 
 

Partition coefficient 

PB 40.18 0.518 4419 
Three layered worksurface 

Material Initial concentration 
(g/m3) 

Similarity coefficient 
 

Partition coefficient 

PV 0 0.518 1000a 
PB 40.18 0.518 4419 
Veneer 0 0.518 1000a 
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Figure 5.10 Comparison of chamber concentrations between pure particleboard and three layered 

worksurface 

From the comparison of Fig. 5.10, we can see that the chamber concentration in the three 

layered worksurface is lower than that of the pure particleboard in the first 1600hours (67 days), 

but it is higher than that of the pure particleboard after 1600 hours. The existence of painted 

veneer prevents acetaldehyde emission from the particleboard in the first two months, but in the 

long term, it takes longer time to completely deplete the acetaldehyde from the worksurface than 

pure particleboard. If the purpose of adding additional layer on the top of a particleboard is to 

keep VOC emission below the target VOC concentration, then careful attention must be paid to 

select this additional layer with a very small diffusion coefficient, otherwise, though it will lower 

VOC concentration in the first two months, it lengthens the exposure time that residents are 

subject to. 
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5.7.4 Effect of source location on emission characteristics 

The location of VOCs sources may affect the emission characteristics for the multilayer 

materials. In order to study the influence of source location on emission characteristics, three 

simulation cases were conducted. To eliminate the influences of material thickness and material 

type, in the simulation, one uniform material particleboard was assumed, and it was assumed that 

the particleboard was divided into three layers with the same thickness. It was assumed that the 

hexanal emitted from the top layer, middle layer and bottom layer, respectively. The area of the 

material was still in the dimension of 7.5” x7.5” and the total thickness was 30 mm (each layer 

was 10 mm). Four edges and bottom were sealed by the VOC-free tape, so no VOCs could 

diffuse through the tape. The amount of hexanal was the same in each case, and the only 

difference was the source location in the material. More detailed information was provided in 

Table 5.14.  

Table 5.14 Simulation of effect of source location of hexanal on emission characteristics 

Source location is top veneer 
Layer name Initial concentration 

(g/m3) 
Similarity coefficient 
 

Partition coefficient 

Top layer 40.18 0.518 4419 
Middle layer 0 0.518 4419 
Bottom layer 0 0.518 4419 

Source location is middle layer 
Layer name Initial concentration 

(g/m3) 
Similarity coefficient 
 

Partition coefficient 

Top layer 0 0.518 4419 
Middle layer 40.18 0.518 4419 
Bottom layer 0 0.518 4419 

Source location is bottom layer 
Layer name Initial concentration 

(g/m3) 
Similarity coefficient 
 

Partition coefficient 

Top layer 0 0.518 4419 
Middle layer 0 0.518 4419 
Bottom layer 40.18 0.518 4419 



www.manaraa.com

 128 

Simulation results are given in Fig. 5.10. We can see that if the source location is in the 

bottom layer, then the peak concentration can be lowered greatly compared to that of the top 

layer. After 30 days elapsed time, VOC concentration for the source in the bottom layer case is 

lower than that either in the top layer or middle layer. In conclusion, though the VOC amount in 

the material is the same for all three cases, the source location does influence the VOC emission 

characteristics.  
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Figure 5.11 Effect of source location on emission characteristics  

5.8 Conclusions 

1. A numerical 1D multilayer model that can simulate VOCs emissions from porous media 

was developed. The model can be used to simulate the VOCs emission from one layered 

or multilayered building/furniture materials.  

2. The one layer case of the model was verified by one layer analytical solution, and it 

showed good agreement between the developed model and the one layer analytical 

solution. The multilayered case was validated by the experimental emission test of the 

worksurface.  

3. Parametric studies of the influence of similarity coefficient, partition coefficient and initial 

concentration of VOC on the emission rate of worksurface has been conducted. The 
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studies showed that the initial concentration and partition coefficient of VOC in painted 

veneer were not the dominant factor in determining the emission rate of VOC from the 

entire worksurface. All three parameters of VOC in veneer had also very minor effect on 

the total emission rate. The main reason was that the thickness and volume of painted 

veneer and veneer was too small compared to core particleboard. However, the diffusion 

coefficient of VOC in painted veneer played a big role in determining the entire emission 

rate. 

4. The model can be applied to many real scenarios, and can be potentially used to solve the 

relevant problems encountered in the manufacturing, e.g., what outer layers may be 

necessary to limit the emissions from the particle core of the assembly; the VOCs 

emission characteristics of the multilayer wood assembly; the VOCs distribution with 

elapsed time in each layer of the assembly.  
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Chapter 6 Conclusions and Recommendations 

6.1 Summary and conclusions 

The first part of this research investigated the similarity between water vapor and VOC 

transport, and the ultimate goal was to build a database of mechanistic emission model 

parameters for the simulation of VOC emission from different materials in both the short term 

and the long term. The following major conclusions can be drawn from this part of the study: 

1) The dynamic dual chamber method developed to measure both water vapour and VOCs 

diffusion through porous building materials and furniture materials had good repeatability. 

Effective diffusion coefficients and partition coefficients were obtained independently, 

with uncertainties of 6.96% and 3.35%, respectively.  

2) The water vapor diffusivity measured using the dual chamber method were in reasonable 

agreement with that measured by the conventional “dry cup method” for water vapor 

transmission tests for the range of relative humidity 25%~80% RH. The VOC diffusivity 

measured by the dual chamber method was comparable to that measured by the mercury 

intrusion porosimetry method. 

3) The differences between three definitions of effective, apparent, and pore diffusion 

coefficients were elucidated.  The relationships between these three diffusion coefficients 

were also established. 

4) A similarity coefficient was proposed to correlate the pore diffusion coefficient of VOCs 

with that of water vapor for hygroscopic moisture conditions in which open pore 

porosity did not change significantly. Values of the similarity coefficients were determined 

for formaldehyde, toluene, acetaldehyde, benzaldehyde, hexanal, butanol and decane for a 

reference material-- calcium silicate. The similarity coefficient could be used to estimate 

the VOC diffusion coefficient if the water vapor diffusivity was known for the same 
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material based on the conventional “dry cup method”. The application of similarity 

theory in particleboard was also validated by the comparison of measured acetaldehyde 

and hexanal emission in a small chamber with a simulated concentrations.  

5) An approach for establishing the database of model parameters by using the similarity 

theory and properties of VOCs and materials was established.  

6) The material characterizations for calcium silicate and particleboard were also obtained in 

the material characterization of CHAMPS-BES. The materials can be used for simulations 

of VOCs emission in the future. 

The second part of this research investigated the effects of relative humidity on the effective 

diffusion coefficient and partition coefficient of VOCs in porous media. The same dynamic dual 

chamber system was used. Additional experiments were also conducted to investigate the 

repeatability of tests, mixture effects, and the relationship between physicochemical properties of 

VOCs and the effective diffusion coefficient/partition coefficient of VOCs in porous media. 

Tests at 25%, 50% and 80%RH were conducted for calcium silicate, while tests at 20%, 50%, and 

70%RH were conducted for conventional gypsum wallboard, “green” gypsum wallboard and 

“green” carpet. Major conclusions are described below. 

For calcium silicate: 

1. The test method showed good repeatability for the measurement of diffusion coefficients 

and partition coefficients of formaldehyde, acetaldehyde and toluene in calcium silicate at 

50%RH. 

2. Humidity’s effect on the diffusion coefficient of formaldehyde and toluene in calcium 

silicate was not significant in the hygroscopic range from 25%RH to 80%RH, where 

blocking of diffusion paths due to capillary condensation was minimal. 
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3. The partition coefficient of formaldehyde (a water soluble compound) in calcium silicate 

did not change when humidity increased from 25%RH to 50%RH, but it increased by 

56% when humidity increased from 50%RH to 80%RH. The increase of the partition 

coefficient of formaldehyde was likely because formaldehyde molecule was absorbed into 

the significantly more adsorbed water under the 80%RH condition. The partition 

coefficient of toluene (a water non-soluble compound) decreased slightly with increasing 

humidity conditions from 25%RH to 80%RH. This was possibly because of the 

competition of water vapor molecules for available adsorption sites with toluene 

molecules. 

4. In the test of a mixture of formaldehyde and toluene, the effective diffusion coefficient of 

formaldehyde was smaller and the partition coefficient of formaldehyde was larger than in 

single compound tests. It was not clear what could have caused such a phenomenon and 

further investigation was needed. Both the effective diffusion and partition coefficients of 

toluene did not differ significantly in the mixture test compared to the toluene only test. 

5. Besides vapor pressure, the solubility of VOC was also one factor that influenced the 

partition coefficient of VOC. The partition coefficient of VOCs was not simply inversely 

proportional to the vapor pressure of the compound, but also increased with a higher 

Henry’s law constant. At a relatively high relative humidity where moisture content is 

significant in the material, the partition coefficient of a water-soluble compound such as 

formaldehyde was found to depend on the Henry’s law constant as well as vapor pressure. 

Further study is needed to establish the relationship between them. 

For conventional gypsum wallboard, “green” gypsum wallboard and “green” carpet: 

1) The test method had good repeatability as verified by the duplicate tests for conventional 

wallboard at 50% RH.  
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2) A higher relative humidity led to a larger effective diffusion coefficient for both 

conventional wallboard and green wallboard.  

3) The partition coefficient of formaldehyde in conventional wallboard became larger from 

20% RH to 50% RH, while the relative humidity effect was insignificant from 50% RH to 

70% RH, considering that the decrease was less than 3 times the experimental uncertainty. 

4) The partition coefficient of formaldehyde in “green” wallboard and carpet increased 

slightly with the increase of relative humidity, probably due to the soluble nature of 

formaldehyde, which was absorbed more into the adsorbed moisture at a higher relative 

humidity. 

5) The effective diffusion coefficient and partition coefficient of green wallboard at each 

level of relative humidity were significantly larger than the ones of conventional wallboard. 

The slightly lower temperature in the “green” wall board than in the conventional wall 

board tests (21 vs. 23 °C) contributed, but may or may not be responsible for all of the 

difference, which requires further investigation.  

6) The carpet specimen was highly permeable and the measured diffusion coefficients at 

20% RH, 50% RH and 70% RH were all at a similar level compared to the formaldehyde 

diffusion coefficient in dry air at 23 ºC, and had insignificant differences among the 

different RH conditions. The partition coefficient, however, increased slightly with an 

increase in the RH level. 

The third part of this study focused on the numerical multilayer model development. 

Parametric studies were used to help determine the diffusion coefficient, partition coefficient 

and initial VOC concentration. The model was verified by experiment data from both 

individual layer tests and multilayer tests. Major conclusions are summarized below. 
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1) The numerical model can be used to simulate the VOCs emission from single-layered and 

multilayered building/furniture materials.  

2) The single layer simulation result from the numerical model was verified by an analytical 

solution with good agreement between the two solutions. The multilayered case was also 

validated by an experimental emission test of a work surface assembly.  

3) Parametric studies of the influences of the similarity coefficient, partition coefficient and 

initial concentration of VOC on the emission rate of worksurface were conducted. The 

studies showed that the initial concentration and partition coefficient of VOC in painted 

and unpainted veneer were not the dominant factors in determining the emission rate of a 

VOC from the entire worksurface. The main reason was that the thickness and volume of 

painted veneer and veneer was 2 orders of magnitude smaller than the core material 

(particleboard). However, the diffusion coefficient of a VOC in painted veneer played a 

big role in determining the entire emission rate. All three parameters of VOCs in the 

unpainted veneer had a very minor effect on the total emission rate when a non-

permeable boundary condition was applied on the veneer surface. Three critical 

parameters, Co, D and K of each layer were determined based on the experimental data 

and the findings of parametric studies. 

4) The multilayer model was applied to several realistic scenarios, and the simulation of 

acetaldehyde from the worksurface showed that the mass flux from painted veneer to the 

chamber decreased with elapsed time over the entire emission period. The mass flux from 

particleboard to painted veneer increased with elapsed time during the first 20 days, and 

then decreased with elapsed time in the later period. The acetaldehyde mass first diffused 

from the particleboard to the veneer, and then changed the flux direction in about 25 

days. The reason was that in the first 25 days, acetaldehyde from the particleboard first 
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saturated the veneer, and then acetaldehyde in the veneer diffused out of its material into 

the particleboard.  

5) The simulation of hexanal in a particleboard only case and in three layers of worksurface 

showed that (1) there was not too much difference for the chamber concentration or 

mass flux of hexanal in the two cases. (2) The mass flux of hexanal from veneer to 

particleboard decreased with elapsed time when hexanal existed in three layers, which was 

different from the case when hexanal only existed in particleboard. (3) The mass flux 

from particleboard to painted veneer when hexanal existed in three layers was higher than 

that when hexanal existed in only particleboard during the first 20 days. It was because 

there was more hexanal in the veneer and particleboard in three layers than that in only a 

particleboard layer. 

6) The simulation also showed the possibility of reducing the VOCs concentration by 

adding an additional layer on the top of VOCs source layer. However, careful attention 

should be paid to select an additional layer with a proper diffusion coefficient. Otherwise, 

the extended emission time caused by adding additional layers may affect the health of 

residents in the room. 

7) The location of VOC source influences the emission characteristics greatly, so it is useful 

to determine the best position for the VOC source based on the analysis of this multilayer 

modelling. 

6.2 Recommendations for future research 

The following subjects are recommended for future research on characterizing and predicting 

VOC emissions from building materials and furnishings: 
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1. To generalize the similarity theory, it would be helpful to conduct further experiments for 

more kinds of VOCs in several more porous materials. In addition, the water vapor 

transport in such porous materials should be further compared with VOC transport. 

2. It would be interesting to further study when the surface diffusion would be significant in 

indoor air conditions. It would also be valuable if the diffusion coefficient of surface 

diffusion for the important VOCs in porous media could be quantified exactly. Those 

values would provide more accurate information than estimated values in interpreting the 

experimental results. 

3. A relative shorter experimental method for the determination of diffusion and partition 

coefficient is needed in the future. Using the current dynamic dual chamber method, for 

acetaldehyde and toluene in calcium silicate, the tests can be finished in one day. 

However, for butanol and benzaldehyde in calcium silicate, it takes about 2 weeks to 

complete the measurement. It is also expected that the test will take much longer for 

materials with larger diffusion resistance such as particleboard, plywood or Oriented 

Strand Board (OSB). It would be worthwhile to reduce the test period in the future both 

to save time and to reduce cost.  

4. A possible efficient way to measure partition coefficients is to use either static(Smith et al. 

2008) or dynamic small chamber tests (Zhang et al. 2002), and then obtain the VOC 

concentrations in both the gas phase and the material phase. The partition coefficient can 

be calculated by those two concentrations. The size of the material should be small 

enough so that a relative shorter time is needed to reach steady sate. 

5. Only random error was considered for the measurement of VOC concentrations since 

the effective diffusion coefficient and partition coefficient were not affected by the 

absolute value of the VOC concentrations. However, it would be more convincing that 
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an approach needs to be developed in the future to give a more complete account of all 

the uncertainty factors involved in such experiments. 

6. For the effect of relative humidity on the diffusion and partition coefficients, it would be 

very worthwhile to develop a mathematical model to calculate the effect of humidity on 

those parameters. Further study on the underlying mechanisms of the humidity effect is 

also needed. 

7. To further study the competition between VOCs molecular and water vapor molecule, it 

is suggested that more tests about transport and storage for mixtures in porous media be 

done.  

8. More study is needed to quantify the exact relationship of the partition coefficients of 

VOCs with their corresponding Henry’s law constants. 

9. The incorporation of a relative humidity effect is recommended for the source code of 

CHAMPS-BES; if added, it can be used to cover the humidity effect in the simulation.  

10. The developed multilayered model can be used for other common multilayered structures 

such as walls, floors, and cabinets, and it can also be used to analyze the emission 

characteristics for more complicated cases like having both top and bottom layers 

exposed to air. 

11. The simulation of the VOC emissions from complicated workstation systems is also 

suggested in the future, which will reduce or replace full scale chamber tests for the 

workstation system. 
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Appendices 

Appendix A VOC database 

# VOC Database File 
#  
# 
# Note: Lines beginning with a hash character '#' are comments and ignored 
# 
# The first table contains the VOC data with the following format: 
#  
# ENTITY <string: VOC name> 
#        <string: alternative descriptive name(s)> 
#        <string: molecular formula> 
#        <double: molar weight in kg/mol> 
#        <double: liquid density of the VOC in [kg(VOC)/m3(VOC)]> 
#        <double vec: temperatures for saturation densities in K> 
#        <            saturation densities in kg/m3(gas)> 
#        <double vec: temperatures for diffusion coefficients in K> 
#        <            diffusion coefficients in air in m2/s> 
# 
# Use the keyword 'undefined' for all _string_ entries to indicate missing information 
# 
# For constant "linear splines" simply store one x and one y value. 
 
 
TABLE: VOC_DATA 
 
ENTITY Formaldehyde 
 50-00-0  
 CH2O 
 3.00E-02 
 1083 
 253.15 258.15 263.15 268.15 273.15 278.15 283.15 288.15 293.15 296.15 298.15
 303.15 308.15 313.15 318.15 323.15 328.15 333.15  
 1.393E+00 1.698E+00 2.052E+00 2.458E+00 2.922E+00 3.449E+00
 4.042E+00 4.707E+00 5.447E+00 5.930E+00 6.268E+00 7.173E+00
 8.166E+00 9.252E+00 1.043E+01 1.171E+01 1.310E+01 1.459E+01
  
 296.15  306.15 316.15 
 1.455E-05   1.6E-05   1.8E-05 
  
ENTITY Toluene  
 108-88-3, methylbenzene, phenylmethane, toluol  
 C7H8   
 9.21E-02  
 865 
 253.15 258.15 263.15 268.15 273.15 278.15 283.15 288.15 293.15 296.15 298.15
 303.15 308.15 313.15 318.15 323.15 328.15 333.15  
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 9.532E-03 1.366E-02 1.924E-02 2.665E-02 3.635E-02 4.888E-02
 6.485E-02 8.497E-02 1.100E-01 1.278E-01 1.409E-01 1.787E-01
 2.243E-01 2.791E-01 3.442E-01 4.211E-01 5.112E-01 6.161E-01
  
 296.15  
 7.280E-06 
  
ENTITY n-Butanol  
 71-36-3  
 C4H10O 
 7.41E-02 
 810 
 253.15 258.15 263.15 268.15 273.15 278.15 283.15 288.15 293.15 296.15 298.15
 303.15 308.15 313.15 318.15 323.15 328.15 333.15  
 3.694E-04 6.622E-04 1.146E-03 1.919E-03 3.122E-03 4.942E-03
 7.630E-03 1.151E-02 1.700E-02 2.128E-02 2.463E-02 3.502E-02
 4.896E-02 6.738E-02 9.136E-02 1.222E-01 1.614E-01 2.105E-01
  
 296.15  
 7.838E-06 
  
ENTITY Hexanal  
 66-25-1  
 C6H12O 
 1.00E-01 
 818 
 253.15 258.15 263.15 268.15 273.15 278.15 283.15 288.15 293.15 296.15 298.15
 303.15 308.15 313.15 318.15 323.15 328.15 333.15  
 2.604E-03 3.878E-03 5.669E-03 8.146E-03 1.152E-02 1.604E-02
 2.201E-02 2.981E-02 3.985E-02 4.716E-02 5.264E-02 6.874E-02
 8.882E-02 1.136E-01 1.439E-01 1.806E-01 2.247E-01 2.774E-01
  
 296.15  
 6.672E-06  
 
ENTITY Acetaldehyde  
 75-07-0  
 C2H4O   
 4.41E-02  
 780  
 253.15 258.15 263.15 268.15 273.15 278.15 283.15 288.15 293.15 296.15 298.15
 303.15 308.15 313.15 318.15 323.15 328.15 333.15  
 3.669E-01 4.596E-01 5.710E-01 7.038E-01 8.610E-01 1.046E+00
 1.262E+00 1.513E+00 1.803E+00 1.997E+00 2.136E+00 2.517E+00
 2.950E+00 3.441E+00 3.993E+00 4.614E+00 5.307E+00 6.080E+00
  
 296.15  
 1.109E-05 
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# The next table contains properties for a combination of materials and VOCs 
# with the following format: 
# 
# ENTITY 
#   <VOC name> 
#   <Material ID name> 
#   <double:    diffusion resistance correction factor(similarity coefficient)> 
#   <double:    partition coefficient> 
 
TABLE: VOC_MATERIAL_DATA 
 
 
ENTITY  
 Formaldehyde 
 Calcium silicate 
 0.52     
 2597  
 
ENTITY  
 Toluene 
 Calcium silicate 
 0.56   
 133     
 
ENTITY  
 n-Butanol 
 Calcium silicate 
 0.32     
 18100     
 
ENTITY  
 Hexanal 
 Calcium silicate 
 0.49     
 7809     
 
ENTITY  
 Hexanal 
 Particleboard 
 0.518     
 4419     
 
ENTITY  
 Acetaldehyde 
 Calcium silicate 
 0.48     
 221     
 
ENTITY  
 Acetaldehyde 
 Particleboard 
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 0.518     
 4325    
  
ENTITY  
 Benzaldehyde 
 Calcium silicate 
 0.19     
 16111     
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Appendix B Individual Test Results for conventional gypsum board, “Green” gypsum 

wallboard and “Green” carpet 

Material: Conventional wallboard 

Relative humidity: 20%RH                  

   Chamber Operating Conditions 

  Temperature:    73.4 ºF (23 ºC) 

  Relative humidity (%):              20% RH 

Air mixing:    ~100% 

Air leakage calculation:                               difference between outflow and                                                      

inflow of each chamber 

- CALIBRATIONS: 

Calibration curve of PTRMS against HPLC: 

y = 0.2904 x
R2 = 0.9930
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- TEST RESULTS 

1) Concentrations for CAin, CAout and CBout during the test: 
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2) The calculated effective diffusion coefficient and partition coefficient are:  

Effective diffusion coefficient De(m
2/s) 3.67х10-8 

Partition coefficient Kma 304 
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Material: Conventional wallboard  

Relative humidity: 50%RH 

Chamber Operating Conditions – 

  Temperature:    73.4 ºF (23 ºC) 

  Relative humidity (%):             50% RH 

Air mixing:    ~100% 

Air leakage calculation:                         difference between outflow and                                                      

inflow of each chamber 

- CALIBRATIONS: 

 

Calibration curve of PTRMS against HPLC: 

y = 0.1634x
R2 = 0.9988
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- TEST RESULTS: 

1) Concentrations for CAin, CAout and CBout during the test: 
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2) The calculated effective diffusion coefficient and partition coefficient are:  

Effective diffusion coefficient De(m
2/s) 6.34 x 10-8 

Partition coefficient Kma 446 
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Material: Conventional wallboard                        

Relative humidity: 50%RH (repeat) 

Chamber Operating Conditions – 

  Temperature:    73.4 ºF (23 ºC) 

  Relative humidity (%):              50% RH 

Air mixing:    ~100% 

Air leakage calculation:                         difference between outflow and                                                      

inflow of each chamber 

- CALIBRATIONS: 

 

Calibration curve of PTRMS against HPLC: 

y = 0.1935x
R2 = 0.9985
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- TEST RESULTS: 

1) Concentrations for CAin, CAout and CBout during the test: 
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2) The calculated effective diffusion coefficient and partition coefficient are:  

Effective diffusion coefficient De(m
2/s) 6.61х10-8 

Partition coefficient Kma 479 
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Material: Conventional wallboard 

Relative humidity: 70%RH                  

Chamber Operating Conditions – 

  Temperature:    73.4 ºF (23 ºC) 

  Relative humidity (%):              70% RH 

Air mixing:    ~100% 

Air leakage calculation:                         difference between outflow and                                                      

inflow of each chamber 

- CALIBRATIONS: 

Calibration curve of PTRMS against HPLC: 

y = 0.1768x
R2 = 0.9932
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- TEST RESULTS: 

1) Concentrations for CAin, CAout and CBout during the test: 
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2) The calculated effective diffusion coefficient and partition coefficient are:  

Effective diffusion coefficient De(m
2/s) 9.84х10-8 

Partition coefficient Kma 404 
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Material: Green wallboard 

Relative humidity: 20%RH 

Chamber Operating Conditions – 

  Temperature:    73.4 ºF (23 ºC) 

  Relative humidity (%):              20% RH 

Air mixing:    ~100% 

Air leakage calculation:                         difference between outflow and                                                      

inflow of each chamber 

- CALIBRATIONS: 

Calibration curve of PTRMS against HPLC: 

y = 0.2812 x
R2 = 0.9990
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- TEST RESULTS: 

1) Concentrations for CAin, CAout and CBout during the test: 
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2) The calculated effective diffusion coefficient and partition coefficient are:  

Effective diffusion coefficient De(m
2/s) 1.65х10-7 

Partition coefficient Kma 1100 
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Material: Green wallboard  

Relative humidity: 50%RH                 

Chamber Operating Conditions – 

  Temperature:    73.4 ºF (23 ºC) 

  Relative humidity (%):             50% RH 

Air mixing:    ~100% 

Air leakage calculation:                         difference between outflow and                                                      

inflow of each chamber 

- CALIBRATIONS: 

Calibration curve of PTRMS against HPLC: 

y = 0.1946x
R2 = 0.9867
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- TEST RESULTS: 

1) Concentrations for CAin, CAout and CBout during the test: 
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2) The calculated effective diffusion coefficient and partition coefficient are:  

Effective diffusion coefficient De(m
2/s) 2.24х10-7 

Partition coefficient Kma 1205 
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Material: Green wallboard  

Relative humidity: 70%RH                 

Chamber Operating Conditions – 

  Temperature:    73.4 ºF (23 ºC) 

  Relative humidity (%):              70% RH 

Air mixing:    ~100% 

Air leakage calculation:                         difference between outflow and                                                      

inflow of each chamber 

- CALIBRATIONS: 

Calibration curve of PTRMS against HPLC: 

y = 0.1721x
R2 = 0.9711
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- TEST RESULTS: 

1) Concentrations for CAin, CAout and CBout during the test: 
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2) The calculated effective diffusion coefficient and partition coefficient are:  

Effective diffusion coefficient De(m
2/s) 4.73х10-7 

Partition coefficient Kma 1325 
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Material: Green carpet 

Relative humidity: 20%RH 

Chamber Operating Conditions – 

  Temperature:    73.4 ºF (23 ºC) 

  Relative humidity (%):              20% RH 

Air mixing:             ~100% 

Air leakage calculation:                        difference between outflow and                                                      

inflow of chamber A while the inflow and 

outflow of chamber B were blocked 

- CALIBRATIONS: 

Calibration curve of PTRMS against HPLC: 

y = 0.2173 x
R2 = 0.9646

0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000

HPLC(µg/m3)

P
TR

M
S

(µ
g/

m
3)

 

- TEST RESULTS: 

1) Continuous pressure drop monitoring in the test: 
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2) Concentrations for CAin, CAout and CBout during the test: 
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3) The calculated effective diffusion coefficient and partition coefficient are:  

Effective diffusion coefficient De(m
2/s) 1.56х10-5 

Partition coefficient Kma 471 
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Material: Green carpet 

Relative humidity: 50%RH 

Chamber Operating Conditions – 

  Temperature:    73.4 ºF (23 ºC) 

  Relative humidity (%):              50% RH 

Air mixing:              ~100% 

Air leakage calculation:                        difference between outflow and                                                      

inflow of chamber A while the inflow and 

outflow of chamber B were blocked 

- CALIBRATIONS: 

Calibration curve of PTRMS against HPLC: 

y = 0.1536 x
R2 = 0.9977
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- TEST RESULTS: 

1) Continuous pressure drop monitoring in the test: 
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2) Concentrations for CAin, CAout and CBout during the test: 

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100 120

Time(h)

CA
in
(µ
g/
m3
)

 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 20 40 60 80 100 120

Time(h)

CA
ou

t(
µg

/m
3)

 



www.manaraa.com

 161 

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120

Time(h)

CB
ou

t(
µg

/m
3)

 

3) The calculated effective diffusion coefficient and partition coefficient are:  

Effective diffusion coefficient De(m
2/s) 1.71х10-5 

Partition coefficient Kma 661 
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Material: Green carpet 

Relative humidity: 70%RH 

Chamber Operating Conditions – 

  Temperature:    73.4 ºF (23 ºC) 

  Relative humidity (%):              70% RH 

Air mixing:               ~100% 

Air leakage calculation:                        difference between outflow and                                                      

inflow of chamber A while the inflow and 

outflow of chamber B were blocked 

- CALIBRATIONS: 

Calibration curve of PTRMS against HPLC: 

y = 0.1250 x
R2 = 0.9924
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- TEST RESULTS: 

1) Continuous pressure drop monitoring in the test: 
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2) Concentrations for CAin, CAout and CBout during the test: 
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3) The calculated effective diffusion coefficient and partition coefficient are:  

Effective diffusion coefficient De(m
2/s) 2.46х10-5 

Partition coefficient Kma 967 
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Appendix C Summary of Standard Operating Procedures (SOPs) cited in the dissertation 

Title:       BEESL SOP 2002-HIGH PRESSURE LIQUID CHROMATOGRAPHY 

(HPLC) STANDARD PREPARATION PROCEDURE 

 

Scope:      Procedures for HPLC standard preparation 

 

Purpose:  To have a written and repeatable procedure for preparing HPLC standards in the 

Lab444. 

 

Training:         Chemical safety class is required; 8 hours for being able to operate;   

                          Significant more time for being experienced personnel.  

Procedure:  

This procedure is written with the assumption that the concentration of each analyte in the 

purchased standard is 100μg/ml. The solution comes with the certificate form issued by Supelco, 

which is NIST traceable. However, a purchased standard with different concentrations can be 

used. In that case, the dilution calculation should be adjusted in order to achieve appropriate 

amount for column injection.  

 

1. Purchase appropriate standard, which contains the target compounds for a specific analysis.   

2. Draw 500μl of the purchased standard. Dilute it with acetronitrile into a 5ml volumetric flask. 

Mixed well and store in clean bottle with Telfon lined cap. Use this standard solution as 

standard #1. Concentration of each analyte in this solution is 10μg/ml. 

3. Draw 250μl of the purchased standard. Dilute it with acetronitrile into a 5ml volumetric flask. 

Mixed well and store in clean bottle with Telfon lined cap. Use this standard solution as 

standard #2. Concentration of each analyte in this solution is 5μg/ml.  
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4. Draw 100μl of the purchased standard. Dilute it with acetronitrile into a 5ml volumetric flask. 

Mixed well and store in clean bottle with Telfon lined cap. Use this standard solution as 

standard #3. Concentration of each analyte in this solution is 2μg/ml.  

5. Draw 50μl of the purchased standard. Dilute it with acetronitrile into a 5ml volumetric flask. 

Mixed well and store in clean bottle with Telfon lined cap. Use this standard solution as 

standard #4. Concentration of each analyte in this solution is 1μg/ml. 

6. Draw 25μl of the purchased standard. Dilute it with acetronitrile into a 5ml volumetric flask. 

Mixed well and store in clean bottle with Telfon lined cap.  Use this standard solution as 

standard #5. Concentration of each analyte in this solution is 0.5μg/ml.   

7. Draw 1ml of the solution #5. Dilute it with acetronitrile into a 5ml volumetric flask. Mixed 

well and store in clean bottle with Telfon lined cap.  Use this standard solution as standard 

#6. Concentration of each analyte in this solution is 0.1μg/ml.   

 

All standard solutions should be stored in refrigerator room and new standards should be made 

at a minimum of every 6 months. 

 

Reference Documents: 

IAQ MOP No.840, High performance liquid chromatography (HPLC) standard preparation 

procedure, EPA IAQ Source Characterization Laboratory.  
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Title:       BEESL SOP 2009-HIGH PRESSURE LIQUID CHROMATOGRAPHY 

(HPLC) ANALYTICAL    PROCEDURES  

 

Scope:     Analytic procedures for cartridge samples analyzed by HPLC. 

 

Purpose:  To have a written and repeatable procedure for HPLC analysis to quantify 

aldehydes and ketones in the Lab444. 

 

Training:        Chemical safety class is required; 2 days for general operation training.  

 

General:   For more specific and detailed information relating to the operation of this 

instrument, refer to the operation manuals of ProStar 220/230/240 Solvent Delivery Module and 

ProStar 310 UV/Vis Detector and the software instruction manual Galaxie Software.  These 

manuals are stored with the instrument. 

                                   

Procedures:  

Part 1 Setting Up: 

1. Fill the solvents in the reservoirs and empty the waste bottle (the method using Water 60%, 

ACN 30%, THF 10%, total running time for 7 minutes per sample); 

2. Turn on the power of Solvent Delivery Module and UV Detector; 

3. Empty  the waste bottle; 

4. Open Galaxie Software on desktop by using default user name and ignoring the password; 

5. Click System in the bottom bar, select “check mark” on HPLC; 

6. At Overview, first click on/off button to turn on pump first, then click D2 Lamp to turn on 

the sensor. Ignore VIS lamp; Usually need to pump 15-20 minutes to get a stable ready to 

measure system; 
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7. If bubbles in the line are observed while pumping, open the Prime Valve on Solvent Delivery 

Module by turning it counterclockwise about one turn; Prime using solvent A until the liquid 

flow from detector discharge line is regular and free of bubbles, then repeat with solvent B & 

C respectively; Purge using solvents with selected composition; Close the Prime Valve and 

pump the selected solvent composition through the entire system for 10-15 minutes;  

8. Now the system is ready for sample analysis, pressure reading should be stable. 

 

Part 2 Diluting/Extraction Samples: 

1. Open the cartridge package and remove both ends of the cartridge; 

2. Place the wider bottom of the cartridge on top of the mini-volumetric flask (5ml); 

3. Use blunt syringe to load and inject 3ml of pure ACN into the cartridge. Make sure the 

syringe is joined snugly to the top opening of the cartridge. Remember this rinse should be 

done very slowly and steadily, drop by drop taking about 80 seconds; 

4. Add additional ACN to fill the flask to the line etched into the glass (5ml); 

5. Cap flask with stopper and shake well; 

6. Place aside and ready to use.  

 

Part 3 Making Injections: 

1. Rinse the 25-uL flat-needle syringe 3 times using ACN ; 

2. Rinse the syringe 3 times in the sample solution to be injected; 

3. Verify that the computer’s status is Waiting, and the knob is in the Load position;  

4. Inject the 20 uL of solution by syringe to the injection port;   

5. Turn knob from Load to Inject position, the computer status will change from Waiting to 

Running; 

6. Wait for at least 30 seconds, then pull the syringe out and switch the injector back to Load 

status; 
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7. Wait for the equipment to finish one analysis; 

8. Wait the status from Running to Waiting status; 

9. Repeat as necessary. 

 

Part 4 Recording Data:  

1. Create Sequence: FileNew sequence System name: hplc  Next  Then fill necessary 

columns,  Table below is given as an example: 

Run name Run ID Description # of injection 
 
Bev-ACT-0122-09-std 

 
1 

 
0.1ug/ml Formaldehyde  

 
1 

 
Bev-ACT-0122-09-std 

 
2 

 
0.5ug/ml Formaldehyde 

 
1 

 
Bev-ACT-0122-09-S 

 
1 

 
S1 sample, 60L, 500ml/min 

 
2 

 
Bev-ACT-0122-09-S 

 
2 

 
S2 sample, 60L, 500ml/min 

 
2 

 
Bev-ACT-0122-09-S 

 
3 

 
S3 sample, 60L, 500ml/min 

 
2 

 

2. To begin the sequence run, click the green arrow at the top of the sequence to start the run; 

to stop the sequence, click red stop; 

3. Make sample injection; 

4. Wait for the equipment to finish one analysis; 

5. Repeat injection for other analysis.  

6. Click System button to view the running status, to view the Real Time Plot: Response Amu 

vs. Time (minutes);  

7. Click Data button, at File open “Chromatogram” to view the data file, click Results to 

get value of  “RT and response Area” ; 

8. After finished all analyses, turn off the Pump and Lamp and uncheck HPLC before closing 

the Galaxie software; 

9. If the equipment is used daily, the power is not necessary to be turned off.  Otherwise, turn 

off the power and cap well the injection port. 
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(Note: By clicking “Syringe picture”  quick startselect method data file name, one will also 

be able to run sample one by one.) 

 

For each group of test, one should run 5 point standard calibration at the beginning of the 

sequential analysis. Each sample can be injected twice and the average result of the two injections 

can be taken to minimize errors caused by syringe injection. To be acceptable, the two injections 

from the same sample should be within ± 15% of the average.  In addition, one blank cartridge 

should be analyzed for each production lot. Ensure that the blank values are in the normal range. 

Reference Documents: 

1. Operation Manual: ProStar 220/230/240 Solvent Delivery Module 

2. Operation Manual: ProStar 310 UV/Vis Detector  

3. Software Instruction Manual: Galaxie Software 

4. LAB444 MOP HPLC1, High Performance Liquid Chromatography (HPLC) Standard 

Preparation Procedure 

5. LAB444 MOP HPLC2, Procedure for collection of air samples on DNPH-Silica cartridges 

and preparation for analysis 

6. IAQ MOP No.842, High Pressure Liquid Chromatography (HPLC) Analytical Procedures, 

EPA IAQ Source Characterization Laboratory. 

7. SOP2002, BEESL 

8. SOP 2003, BEESL 
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Title:       BEESL SOP 2010-DUAL CHAMBER OPERATING PROCEDURES  

 

Scope:     The SOP covers specimen preparation, installation, precondition, test condition        

verification, sampling and analysis 

 

Purpose:  Ensure reliable and repeatable test results in experiments using the Dual Chamber 

system 

 

Training:        One day for general operation, some knowledge about fundamental principle of 

dual chamber system  

 

General:   The inlet concentration is dependent on the generation of the dynacalibrator, 

which is not within the scope of this SOP. The sampling of the concentration is taken by PTRMS 

(refer to SOP 2012 PTRMS).  

                                          

Procedures:  

 

Part one: material preparation and installation 

1. Examine the edge sealing and integrity of the test specimen. The size of the sample shall 

have the dimensions of 12 inch х12 inch.  The thickness shall be no more than half inch. The 

cut edges are sealed with non-VOC aluminum tape.  The tape covers the four cut side edges 

with ¼ inch overlay on both faces.  This is necessary to achieve a satisfactory seal as the tape 

does not completely stick to bare composite wood edges.  Thus, the nominal emitting 

surfaces are typically 11.5 inch by 11.5 inch.   

2. Install the specimen in the specimen holder and assemble it air-tight with the dual chambers 

by six clamps. Adjust the inflows of both chambers to the desired flow rates. Measure the 
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inflows Qin (cc/min) and outflows Qout (cc/min) of both chambers. The leakage rate of the 

two chambers should be less than 3% of the total supply air flow rate as determined by the 

difference between the inlet and outlet flow rates of the two chambers. i.e.,  

%3%100 ≤×
−

=
in

outin

Q
QQ

Leakage  

3. Measure the absolute pressure of chamber A and chamber B, and make sure they are positive 

pressures compared to the ambient. This prevents the contamination from ambient air. 

4. Measure the pressure drop between two chambers and verify that it is negligible (less than 4 

Pa).  

5. Document the measured values in the above procedures (2, 3, and 4) in the logbook as 

future reference in the data analysis period. 

 

Part two: precondition of the material under the desired environmental condition 

1. Adjust the RH value in the RH control panel.  

2. Precondition the dual chamber facility by supplying the desired flow rates under the specified 

RH into both chambers. 

3. Record the RH condition in the preconditioning period, download it from the computer. 

Analyze the RH data for two chambers until the RH in the outflows of the chamber A and B 

reach stable. The time needed for precondition varies for different specimens. 

 

Part three: testing 

1. When the airflow rate, temperature and relative humidity are stable, take formalehyde 

background sample for chamber A and B, respectively. 

2. Start the test by injecting constant formaldehyde concentration into chamber A. In the 

meantime, record the formaldehyde concentration change continuously. As the dotted line 

indicates in Fig. (1), only one PTRMS is employed in the test, so PTRMS switches among the 
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lines of CAout, CBout and CAin in the test period. For each of these data points, the PTRMS will 

be used to take an air sample every 10 seconds for 5 minutes, and the average value will be 

used to determine the concentration. The test measured concentrations are considered to 

reach steady state when the moving average of CAout and CBout do not change more than 1% 

between two adjacent data points. 

3. Record the temperature, airflow rate and relative humidity for the inflow and outflow of the 

chambers simultaneously when the test begins.  

4. Stop the test once the formaldehyde concentrations in two chambers reach steady state---i.e., 

the difference between two adjacent sampling time points is less than 1%. 

5. Verify the test conditions and download all recorded data including PTRMS and 

environmental conditions. 

 

Part four: after test finishes 

1. Stop the inflows of the chamber A and B.  

2. Put the relative humidity control into “off” status in the control panel. 

3. Remove all the clamps around the chambers. 

4. Take the specimen holder out of the chambers.  

5. Remove the specimen from the specimen holder and put in the storage or dispose it. 

 

Reference Documents: 

1. SOP 2011 Dynacalibrator 

2. SOP 2012 PTR-MS 
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Title:       BEESL SOP 2011-VICI Model 500 DYNACALIBRATOR OPERATING 

PROCEDURES  

 

Scope:     Operating procedures for Dynacalibrator (VICI product, Serial#M-2028) 

 

Purpose:  Ensure consistent operation of the device and achieve reliable and repeatable air 

supply with known stable concentration. 

 

Training:        Two hours for general operation, require some knowledge about permeation tube 

 

General:   For more specific and detailed information relating to the operation of this 

instrument, refer to the operation manuals of the Dynacalibrator.  These manuals are stored with 

the instrument. 

Procedures:  

 

Power on the instrument 

1. To ensure high quality, flush it by setting the empty chamber to 100ºC and set flow rate at 

highest mark, press Vent run for 1 hour, press Span 1/2 hour, then turn off heater and flow.  

2. For a specific VOC generation task, determining its required temperature, flow rate, and type 

of permeation tube by doing homework first.  Refer or better remember some basic 

information from Manual: expanded temperature unit: 2ºC above 110ºC, standard unit: 50º C; 

output pressure: 0-5 psi, 50 psi optional (option H); Maximum permeation device length: 

23.5 cm and max. diameter:1.6 cm; Tube connection:1/4”tubing; No internal pump; 

Precision rotameter dilution flow has 150mm graduated scale furnished with 15 individual 

calibration setting, exact flow value for each setting need to check “Dynacalibrator 

Flowmeter Calibration Data Table” in the manual (two small balls: top float, bottom float). 
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3. Open the chamber door, carefully using special tong to insert the permeation tube to the 

glass chamber, then close the chamber door; Wear gloves for best safety when touching 

permeation tube. 

4. Set the temperature and flow rate as pre-determined for current task, refer to the manuals for 

understanding the flowmeter reading mark on the front of the instrument 

5. Remember press Vent which leads to waste line, a default safe position 

6. Usually need to run 4-12 hours to get a stable voc generation depending on type of VOCs 

7. Press Span to do injection whenever necessary 

8. After test is done, reduce Temperature to 23ºC, keep flow Vent, continue run for a few 

hours, till to room temperature 

9. At room temperature, open chamber door, take permeation tube out and restore it to its 

original container; Wear gloves for safety. 

10. Power off the instrument 

 

Reference Documents: 

1. Manual of Dynacalibrator Model 500 from VICI 

2. Permeation tube product description 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 176 

Title:       BEESL SOP 2012-HIGH SENTIVITIVITY PROTON TRANSFER 

REACTION MASS SPECTRA (PTR-MS) OPERATING PROCEDURES  

 

Scope:     Operating procedures for high sensitivity PTR-MS 

 

Purpose:  To ensure consistent operation of PTR-MS for achieving reliable and repeatable 

measurements 

 

Training:        One day for general operation, some knowledge about Proton Transfer Reaction  

 

General:   For more specific and detailed information relating to the operation of this 

instrument, refer to the operation manuals of PTRMS Viewer 2_5 manual and PTRMS Control 

2_5 software manual. These manuals are stored on BEESL server (T:\software\PTR-MS) 

                                          

Procedures:  

 

Part 1 Cold Start (System Power is off) 

 

1. Take PTR-MS log book and read through the most recent record of previous status; 

2. Turn on the power of  the PTR-MS; Wait 5-10 minutes till all the front panel light indicates 

are Green; 

3. Turn on the Laptop (no password required), make sure the cable connection is tight well; 

4. Open the software by clicking PTR-MS Control icon on the desktop; 

5. Click PCU -> load PCU set -> Select the most recent one, for example: Dec0109.pvs; 

(Sometimes, if the actual reading not matching the setting values, may click the box of set 

value, change it to 0, then change back)  
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6. Click Tools -> Enable Export Control if visually see the “U draft[v], U QL[v], U NC[v] 

reading is not active; 

7. Make sure system values are fine refer to the record of the log book, for example:  

Detector voltage: 3010 [v], Pressure REA [mbar]: 2.21, PC [mbar]: 355,  

FC [sccm]:7.5; USO [v]:70, US [v]:110, U drift [v]: 600, UQL [v]:50, UNC [v]:6.0, and 

Source [mA]: 6.0. 

8. From cold start to get stable accurate measurement, may need to wait above 5 hours; 

9. Select MID mode, keep the reserved  6 channels (channel 0 to channel 5) unchanged, that 

are set to measure p-mass of 18, 21, 25, 30, 32, 37 to provide system measurement 

information in case water reservoir problem happen; Remember p-mass at 25 is a fake one.  

Its actual function is controlling the sampling time intervals. 

10. To measure a specific target compound, one should manually select a channel, fill the values 

for “mass, dwell time, K value, multiplier”, the rest can be default values. Refer to the 

Manuals of PTR-MS for questions. 

11. One may click cps (counts per minute) or ppb as concentration unit view in plot window 

12. One may click Quick for a quick measure. The data file is only temporally stored and will be 

automatically replaced by next Quick measure. 

13. Click Record to start the measurement, make sure to create and save the Data File Name; 

remember the data will be automatically stored at “Desktop / My Document / Shared 

Documents / Lab view data / PTR data” 

14. After the measurement, Click Stop to stop the measurement 

15. Simply close the software as “Standby mode” if one will measure within three days. This will 

protect SEM detector, while all flows will stay same. 

 

Part 2 Standby Mode (while the all the power and flow are on) 

1. Simply start the software, all settings should be as before 
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2. System should be ready to do measurement after 3-5 minutes 

 

Part 3 Scan Mode 

1. Click Scan to perform scan, click Stop to stop; 

2. The scan mode setting reference are: Detector: IonCount, Mode: Bargraph, Dwell/mass: 

10ms (range 0.5ms to 60s), Start mass:21, End mass: 60, (mass range can up to 512), K-rate:2, 

Resoluition:25, Pause cal: 0.10  

 

Part 4 How to Turn off  

1. Click PCU -> Load PCU sets ->select Set all zeros.pvs 

2. Make sure all PCU settings changed to 0, then close software 

3. Wait all pump noise diminish, takes about 10 minutes, then turn off power of PTRMS 

 

Part 5 Data Processing  

1. There are two data files for each measurement, *.tdm and *.tdx,  both should store under 

“Desktop / My Document / Shared Documents / Labview data / PTR data”; 

2. Copy both files to your computer, import to Excel to do analyze; 

3. Remember your computer must install a drive software first, which is “NI TDMS Excel 

Importer” located at SU:\T\software\PTR-MS” 

Reference Documents: 

1. Iconic Analytic PTRMS Manual- hard copy binder 

2. PTRMS Control 2_5 software manual-hard copy binder 

3. On BEESL server (T drive) updated pdf files: PTRMS Viewer 2_5 manual and PTRMS 

Control 2_5 software manual 

4. Log book for PTR-MS stayed with the PTR_MS which had all the using record for the 

instrument 
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Appendix D Small chamber tests for three individual layers and worksurface 

Worksurface is composed of three layers: painted veneer, particleboard and veneer from top 

to bottom. In the experiment, total four materials have been tested: painted veneer, particleboard, 

veneer and worksurface. For each individual material, a small chamber test was conducted, in 

which the material was placed in a dynamic chamber and two duplicate samples were taken at the 

equilibrium status. The purpose of the small chamber tests for the three individual materials was 

to identify each significant VOC in every single layer and the concentration level of each emitted 

VOC. The purpose of conducting emission test for worksurface was to verify the multilayer 

model by the measured emission data. In order to better quantify the VOCs, the 14 most popular 

and clearly identified VOCs by a GC/MS and HPLC were selected as the target VOCs listed in 

Table D.1. 

Table D. 1 Target compounds in emission tests 

Target compounds CAS # Retention 
time(min) 

2-Methyl-1-propanol 78-83-1 4.78 
n-Butanol 71-36-3 5.68 
Toluene 108-88-3 7.7 
Isobutyl acetate 110-19-0 8.01 
Hexanal 66-25-1 9.3 
m/p-Xylene 108-38-3/106-42-3 11.12 
o-Xylene 95-47-6 12.06 
3-Ethyltoluene 620-14-4 14.34 
1,3,5-Trimethylbenzene 108-67-8 14.58 
1,2,4-Trimethylbenzene 95-63-6 15.58 
1,2,3-Trimethylbenzene 526-73-8 16.66 
Phenol 108-95-2 18.12 
Formaldehyde 50-00-0 3.09 
Acetaldehyde 75-07-0 4.54 

Note: Formaldehyde and acetaldehyde were analyzed by HPLC, while the other VOCs were 

measured by GCMS. 

D. 1 Test conditions 

Four tests were conducted in small stainless steel chamber with standard 50 L volume (0.5 by 

0.4 by 0.25 m) inside a temperature controlled enclosure to maintain the chamber test conditions 
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to be at 23±1°C, 50±5% RH, with air change rate equal to 1(refer to Fig. D.2). Duplicate samples 

were taken by two precision gas flow controller (Model MC-5SLPM-D, Alicat Scientific, refer to 

Fig. D.1 (c)) to make sure the quality of the samples. Sulfur Hexafluoride was injected 

occasionally into the chamber to confirm the air change rate using photoacoustic field gas 

monitor (1412, Innova, AirTech Instruments). The exhaust air of the chamber was drawn 

through the cartridges (Waters Sep-pak DNPH-silica cartridge, Waters) where aldehydes was 

trapped by 2, 4-Dinitrophenylhydrazine (DNPH) into a DNPH derivative. Water Sep-Pak Plus 

cartridges were constructed of high-purity polyethylene components with triaxially - compressed 

packed beds and Luer fittings. Finally, all the cartridges were analyzed by high performance liquid 

chromatography (Model 310, Varian Prostar UV Detector and Model 230, Varian Prostar Solvent 

Delivery Module, refer to Fig. E.1 (b)) together. Other VOCs were collected by stainless tubes 

containing Tenax-TA sorbent (refer to Fig. E.1(d). The VOCs collected on the tube are then 

thermally desorbed to a GC/MS (Fig. E.1 (a)) system for identification and quantification. 

 

                 

                             (a)                                                          (b) 
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                                    (c)                                                          (d) 

Figure D 1 (a) GC/MS (b) HPLC (c) Mass flow controller (d) Cartridge and Tenax-TA tube 
 

   

Figure D 2 Small-scale environmental chamber test system 

 

D.2 Treatment of the specimens 

Test specimens were collected from the same batch of production and separately wrapped 

using Tedlar bags and stored in a storage room (23±1ºC and 50%±5% RH).  Before testing in 

the small chamber, test specimen was then unwrapped and cut in the dimension of 7.5”×7.5” 

(19.05cm×19.05cm), with sealed edges and bottom. 

An often used approach to specimen preparation and the first one considered in this study is 

to treat each material face as a separate emitting surface and to attempt to isolate this face by 

sealing the other face with a metal plate. The cut edges were sealed with non-VOC aluminum 

tape.  The tape covered the cut edges and was folded over both faces covering a border 0.64-cm 

wide (refer to Fig. D.3). This was necessary in order to achieve a satisfactory seal as the tape does 

Tube 

Cartridge 
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not completely stick to bare composite wood edges.  Thus, the nominal emitting surfaces were 

typically 17.8-cm by 17.8 cm (0.0316 m2).  The thickness of particleboard, veneer and painted 

veneer are already summarized in Table D.1.  

    

                                 (a)                                                           (b) 

   

                                (c)                                                            (d) 

Figure D 3 Treatment of (a) Painted veneer (b) Particleboard (c) Veneer (d) Work surface 

The tested specimens are shown in Fig. D 3(a) - (d). The worksurface consisted of painted 

veneer in the top layer, core particleboard in the middle layer and wood veneer in the bottom 

layer, and was illustrated sequentially from top to bottom in Fig. 5.3. Separate tests were 

conducted for worksurface, particleboard, wood veneer and painted veneer specimen, 

respectively.  

D. 3 Determination of sampling intervals of each material 

     The sampling of each material was determined separately by virtue of different standards 

developed by BEESL. Duplicate samples of particleboard followed the same sampling intervals 
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developed in the BIFMA standard, i.e. 24hrs, 48hrs, 72hrs, 96hrs, 168hrs and 336hrs, and 

extended four more weeks with one week interval. One set of samples of worksurface were also 

taken with the same sampling intervals in BIFMA standard in the first two weeks, with the 

extention of two more weeks. Duplicate samples of painted veneer have only three sampling 

pointes, i.e. 72hrs, 168hrs and 336hrs because new sampling standard was developed in the report 

of Zhang et al 2008. It was found that the concentration level of VOCs from veneer was quite 

low compared to the concentration levels from other materials, so only 24hrs data were taken in 

the veneer sample. 

D. 4 Test results 

The results of identified VOCs in the small test were provided in Table D.2 with VOCs 

concentrations in descending order. Painted veneer had more kinds of VOCs than particleboard 

and veneer.  

Table D. 2 Results of identified VOCs for individual layer 
Material Identified VOCs 
Particleboard Hexanal, acetaldehyde, formaldehyde, toluene 
Veneer Hexanal, n-butanol, formaldehyde 

Painted veneer 
n-butanol, 2-methyl-1-propanol,formaldehyde,hexanal, 1,2,3-
trimethylbenzene, isobutyl acetate, 3-ethyltoluene, 1,2,4-trimethylbenzene, 
1,3,5-trimethylbenzene, o-xylene, m/p-xylene, acetaldehyde 

The VOCs studied are acetaldehyde and hexanal because those are among the major emitted 

VOCs from particleboard. Particleboard is the core of the worksurface.  

The result of the individual layers and worksurface will be provided in the section of the 

experiment validation for the multilayer model in chapter 5.    
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